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Inverse Finite Element 
Characterization of Nonlinear 
Hyperelastic Membranes 
It is advantageous in mechanics to identify experiments that correspond to tractable 
boundary value problems--this facilitates data reduction and interpretation. Increas- 
ingly more situations are arising, however, wherein experimentalists cannot dictate 
the geometry or applied loads" during testing. Inverse finite element methods are, 
therefore, becoming essential tools for calculating material parameters. In this paper, 
we present numerical and experimental results that show that one such inverse finite 
element method is very useful in characterizing the mechanical behavior of neo- 
Hookean (rubber) membranes subjected to axisymmetric and nonaxisymmetric finite 
inflations. 

Introduction 
One of the final steps in any constitutive formulation is deter- 

mination of the numerical values of the material parameters. 
Most often, parameter estimation is accomplished using data 
from experiments that correspond to tractable boundary value 
problems--this greatly facilitates data reduction and analysis. 
Two of the most convenient tests in finite elasticity are in- 
plane biaxial stretching of a thin rectangular sheet and combined 
extension and torsion of a solid cylindrical rod (Green and 
Adkins, 1970). When the material of interest can be cut or 
fabricated in the requisite geometry, one can perform these 
"preferred" tests and thereby determine material parameters in 
a straightforward manner. 

There are, however, increasingly more situations wherein one 
has little or no control over the geometry of, or applied loads 
acting on, the material of interest. Examples include tests on 
biological tissues whose geometry is dictated by nature (e.g., 
aneurysms) as well as nondestructive evaluations of the material 
properties of a structure in its service environment. Hence, there 
is a need for nontraditional methods for characterizing the be- 
havior of materials when the associated boundary value problem 
is complex. One such approach is the inverse finite element 
method, which was introduced by Kavanagh and Clough 
( 1971 ). Here, we present new results from a combined numeri- 
cal and experimental validation study that show that axisymmet- 
rically and nonaxisymmetrically inflated neo-Hookean mem- 
branes can be well characterized using the inverse finite element 
method. 

Computational and Experimental Methods 

Parameter Estimation. Fundamental to determining val- 
ues of material parameters from data is a good regression algo- 
rithm. Of the available approaches (e.g., steepest descent, New- 
ton's method), we prefer the Levenberg-Marquardt method, 
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which has been shown to be robust in finite strain applications 
in rubber elasticity and biomechanics (e.g., Twizell and Ogden, 
1983; Humphrey et al., 1990, 1992). Briefly, one minimizes an 
objective function e, in a least-squares sense, where 

e = ~ [(yt(b) - y , ) ' ( y t (b )  - Ye)]k. (1) 
k=l 

Herein, y~ is a vector of "experimentally measurable" quanti- 
ties (e.g., surface marker positions or in-plane stress resultants), 
Yt contains the associated "theoretically determined" quantities, 
b is a vector containing the (yet unknown) material parameters, 
and m is the number of measurements. Values of b are deter- 
mined via 

( j r j  + yi)(b(/+l) _ b ( / ) )  = _ j r ( y ,  _ ye)~i), (2) 

where J = (ay,/0b) u), i is an iteration counter, and y is the 
Marquardt parameter. We calculated J using a forward differ- 
ence method, and used a public domain routine leasqr.m (by 
R. Shrager) to perform the estimations. Determination of y, via 
finite elements constitutes an inverse finite element method. 

Finite Element Calculations. Our methods for solving axi- 
symmetric and nonaxisymmetric finite inflations of isotropic 
and orthotropic hyperelastic membranes are described else- 
where (Kyriacou and Humphrey, 1996; Kyriacou et al., 1996). 
Briefly, the governing (virtual work) equation is 

f~o(rw)dA - f ( P n . r x ) d a  = O, (3) 

where w is a strain-energy function defined per unit initial sur- 
face area A (and is related to W defined per unit volume by w 
= WH, where H is the undeformed thickness; Pipkin, 1968), 
P is the distension pressure, n an outward unit normal to the 
membrane in the current configuration, 6x the virtual changes 
in position, f~o the original domain, and f~ the current domain. 
Finite element equations result from discretization of the do- 
main and introduction of suitable interpolation functions: 
herein, axisymmetric and nonaxisymmetric problems were 
solved using isoparametric three-noded quadratic and four- 
noded bilinear elements, respectively, and the as,;ociated stan- 
dard two and four-point quadrature rules. Because of inherent 
geometric and material nonlinearities, (3) yields a system of 
nonlinear algebraic equations, which can be represented as g (q) 
= 0, where q represents the vector of (unknown) nodal posi- 
tions. This equation admits an iterative Newton-Paphson solu- 
tion, viz., 
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K(qU)) [q  u+L) - q(i)] = -g (q ( i ) ) ,  (4) 

where K = Og/Oq is the tangent matrix and i an iteration 
counter. We evaluated K analytically to obtain quadratic con- 
vergence- -see  Kyriacou et al. (1996) for details. More im- 
portant here, however, note that the finite element method yields 
the current position of each node, from which we can interpolate 
to obtain the position xt of any point on the membrane. Thus, 
y, in (1) is taken to be 2, 

(I) ~(1) ~(1)  ~(n)~ y, = ( x l , ,  x]7 ), x~'] ~, ~3, , (5) • . . ,  ~ ' 2 t  , . . . ,  • . .  , ~ ' 3 t  ) 

where xtt is a Cartesian component and the superscript denotes 
a "marker"  number. The x3, term is identically satisfied in 
axisymmetric inflations and not explicitly included in those re- 
gressions. 

Analyt ic  Axisymmetr ic  Approach.  For the special case of 
an axisylnmetric inflation, the two governing differential equa- 
tions, 

d 
d--r ( r T t )  = T=, K1Ti q" KzT2 = P ,  (6) 

can be solved for the principal Cauchy stress resultants T~ (a  
= l,  2) in terms of the experimentally measurable uniform 
pressure P and principal curvatures K~ (Green and Adkins, 
1970; Hsu et al., 1994): 

Ti P T2 P (1  K~£2) (7) 
2K= K2 

where 1 and 2 denote meridional and circumferential directions, 
respectively. T, are also easily calculated for a hyperelastic 
membrane given a form of w and values of the principal stretch 
ratios X, (Humphrey et al., 1992), as for example, 

2 Ow 
T = F" "F  r (8) 

det F 0C 

where F is the two-dimensional deformation gradient tensor (F  
= diag [kl,  X=] here) and C = F r .  F. An example w for a soft 
biological tissue is in Humphrey et al. (1992). For the Mar- 
quardt regression, therefore, it is convenient to let 

y, = (T~P, . . . ,  T]7 ), *=,w(u, . . . ,  T~,~), (9) 

wherein the superscript again denotes different locations on the 
membrane (which are defined by sets of markers). It is im- 
portant to recognize, therefore, that except for an inflation of a 
perfectly spherical membrane, data from different regions of a 
mnembrane at one equilibrium configuration represent the equiv- 
alent of "different strain protocols." For example, the inflation 
of a flat circular membrane clamped around its periphery yields 
equibiaxial stretching at the pole, strip biaxial stretching at the 
clamped base, and a spectrum of proportional stretching tests 
between (Wineman et al., 1979; Hsu et al., 1994). Hence, per- 
forming a regression based on data from one point (n = 1 ) on 
a membrane at, say, m pressures is very different from using 
data from n locations at m configurations even when n m  is 
equivalent; indeed, using data from "multiple protocols" in a 
single regression can yield improved estimates of the material 
parameters (Humphrey et al., 1990, 1992). 

M e m b r a n e  Inflat ion Exper iments .  Appropriate experi- 
mental devices and techniques are essential for determining 
values of material parameters. We recently constructed a tri- 
plane video-based system for performing finite strain inflation 
tests on biomembranes (Hsu et al., 1995). Briefly, this system 

consists of a computer-controlled fluid pump, pressure transduc- 
ers, computer-based data acquisition system, and three synchro- 
nized CCD cameras. Two "bip lane"  cameras, separated by a 
45 deg angle, track the motions of three to six small markers that 
are affixed to the surface of any inflating membrane, whereas a 
third camera, mounted orthogonal to the plane containing the 
biplane cameras, monitors "the profile" at 15 equidistant loca- 
tions along axisymmetric specimens 3. Marker tracking and edge 
detection are accomplished on-line at 15 Hz using custom corre- 
lation and threshold based algorithms, respectively. Spatial reso- 
lution was >0.05 mm. Finally, all positional data were fit (as 
a function of pressure) with smooth functions, from which re- 
gression data were obtained. 

Two classes of experiments were performed at room tempera- 
ture on thin (~0 .18  mm) sheets of rubber taken from surgical 
gloves. Axisymmetric tests resulted by inflating (from under- 
neath) initially flat, stress-free specimens through an 11 mm 
diameter circular orifice, whereas nonaxisymmetric tests re- 
sulted by inflating specimens through an elliptical orifice (major 
axis = 11 and minor axis = 6 mm) ; all specimens were clamped 
around their periphery and inflated at the same rate. Cyclic 
inflations were performed, using distilled water, to a maximum 
pressure of about 13 kPa in axisymmetric tests and 19 kPa in 
nonaxisymmetric tests. These inflations yielded principal 
stretches at the pole of about 1.3. Prior to testing, however, 
specimens were allowed to creep for two minutes (from an 
initial uniform expansion of about 1.4) at a constant pressure. 

F o r m  of the Stra in  Energy.  The neo-Hookean W describes 
well the behavior of rubber over the modest range of finite 
stretch up to 1.3, thus it was employed herein. It is 

W = c ( I i  - 3), (10) 

where c is a material parameter having units of stress and I~ 
= tr C where C is the three-dimensional right Cauchy-Green 
deformation tensor. 

Axisymmetric Simulat ions.  Prior to testing, we performed 
numerical simulations to identify certain preferred experimental 
conditions. That is, we used our finite element code to generate 
positional "da ta"  for various axisymmetric inflations and a 
given value of the neo-Hookean parameter c. Gaussian noise 
was then created using a random number generator and intro- 
duced into the "data"  to simulate potential experimental errors. 
The perturbed data were input (as y~) into the inverse finite 
element code which then estimated the value of c. This approach 
allowed comparisons of estimated and true values. For conve- 
nience, the problem was nondimensionalized: for example, the 
nondimensional pressure P* = P L / c H ,  where L is a character- 
istic length scale (e.g., specimen radius, a) ,  c the neo-Hookean 
material parameter, and H the undeformed thickness. 

Results 

Axisymmetr ic  Simulat ions.  Consider first the inflation of 
an initially flat circular membrane that was clamped at its pe- 
riphery. Figure 1 shows the deformed configuration (solid line) 
for P* = 1.5 and a nondimensional radius of 1. Positional data 
for nine "markers"  (at initial radii of 0.1, 0.2 . . . . .  0.9; open 
circles) were generated by adding Gaussian noise (mean of 0.0 
and standard deviation of 0.02) to a finite element solution from 
a ten-element mesh. Based on an initial guess of P* = 0.5 
(dotted line), the estimation yielded a value of P* = 1.510 
in seven i terat ions-- the predicted marker positions and final 
deformed shape are shown by asterisks and a dashed line, re- 
spectively. All simulations yielded similar results. 

2 It is preferable to use positions in the objective function since they are calcu- 
lated with the greatest accuracy in this "displacement '  ' -based finite element solu- 
tion. 

3 Local strains can be calculated fi'om the motions of sets of  markers whereas 
both principal curvatures can be calculated from a single profile of  an axisymme-  
tric membrane  (see Hsu et al., 1995). 
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Fig. 1 Nondimensional specimen profile for an axisymmetric simulation: 
open circles denote marker positions (input data) that resulted from 
superimposing Gaussian noise on results from a standard finite element 
(FE) solution; the dotted line shows the FE solution based on an initial 
guess for c; the dashed line shows the FE solution based on the Mar-  
qua rd t  estimate for c; asterisks show final predicted positions of the 
markers (circles); the dashed and solid lines coincide 

Many studies have been based on marker positions or stretch 
ratios measured at only one point on an inflated membrane. 
Figure 2 shows predicted errors in the parameter estimation as 
a function of the placement of a single "marker." Each result 
represents a mean + SD for six estimations based on indepen- 
dently generated Gaussian noise, all other variables being the 
same as those in Fig. 1. Clearly, estimations based on a single 
marker were better if it was located close to the pole. It is 
preferable to collect data from more than one marker, however, 
and in general the more markers the better. Yet, experiments 
become more challenging as the number of markers increases, 
thus there is a need to identify minimum sets that yield reliable 
estimates. Figure 3 shows predicted errors in the parameter 
estimation as the number of evenly spaced markers was in- 
creased from 1 to 10 (recall that each marker supplies x~ and 
x2 information). As expected, the error decreased with increases 
in the number of markers, but six markers appeared sufficient 
in this case. 

Because of material nonlinearity, the stiffness of an inflated 
membrane is different, in general, at each distension pressure. 
It is of interest, therefore, to determine how the magnitude of 
the pressure affects the estimation. Figure 4 shows that the error 
in the estimated parameter decreased with an increase in the 
pressure at which the data were generated (again, other vari- 
ables are the same as in Fig. 2). Of course, estimations based 
on traditional stress-strain tests rely on data from multiple equi- 
librium configurations. Figure 5 shows that the error in the 
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Fig. 2 Error in the estimated neo-Hookean parameter (i.e., (c . , t  - Ctrue)/ 
ct~u.) as  a function of the position of one "tracking marker." Each result 
is given as mean + S.D. based  on  six independent simulations that re- 
sulted from superimposing different Gaussian errors on the input marker 
positions; position 0 denotes the pole, 1 the base, 
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Fig. 3 Similar to Fig. 2, except for the number of markers tracked 

estimated parameter tended to decrease with an increase in the 
number of equilibrium configurations. Nonetheless, for the case 
considered, one to two configurations were adequate for robust 
estimation; note that the maximum pressure P* = 1.5 in each 
of these simulations. 

As pointed out by Kavanagh and Clough (1971), inverse 
finite element methods can be very sensitive to experimental 
error. Hence, we performed multiple simulations (with P* = 
1.5 and six markers) for different levels of "experimental 
noise," all having a mean of 0.0 but standard deviations ranging 
from 0.05 to 0.0001. As expected, the error in the estimated 
parameter increased markedly with an increase in experimental 
noise (Fig. 6). 

Axlsymmetrie Experiments. For the inverse finite element 
estimations we usually tracked six markers which were placed 
along a meridian4; for the analytical based estimations we 
tracked the entire profile plus three markers which formed a 
triplet (see Hsu et al., 1994, 1995). Figure 7 shows a typical 
result for a finite element estimation: open circles show the 
locations of six markers in each of two equilibrium configura- 
tions, dotted lines the predicted profiles of the membrane based 
on the initial parameter guess, asterisks the predicted locations 
of the six markers based on the final Marquardt estimated pa- 
rameter, and dashed lines the associated final finite element 
predicted profiles. Results were similar for all sewm such tests. 

In contrast, estimations using the analytical approach allowed 
us to fit stress resultant versus principal stretch data in the 
traditional way. Figure 8 shows results for T, versus ha for 25 
successive equilibrium configurations (P E [0, 17,33 kPa]) for 
one representative test (note: the centroid of the triplet of mark- 
ers was about 35 percent of the distance from tile center). The 

4 Although it was impossible to place the markers along a single generator 
curve, knowledge of  the three-dimensional positions allowed us to " ro ta t e"  each 
point to a single meridian. 
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Fig. 4 Similar to Fig. 2, except for the magnitude of the nondimensional 
pressure P* at which the estimation was performed 
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Fig. 5 Similar to Fig. 2, except for the number of equilibrium configura- 
tions used in the regression; the maximum P* = 1.5 in each 

initial guess for c was 2.85 kPa, and the final estimate was 200 
kPa. Results were similar for all eight such experiments. 

Nonaxisymmetric Experiments. For purposes of compari- 
son, we tracked three to six markers on the initially elliptical 
membranes; because of nonaxisymmetry the xt, x2, and x3 coor- 
dinate locations each gave independent information, hence 
tracking four markers was comparable to tracking six markers 
on the circular membrane. Though somewhat difficult to visual- 
ize, Figure 9 shows one-fourth of a single deformed configura- 
tion; the mesh consisted of 122 elements that were generated 
using the IDEAS software package. The dotted mesh shows the 
configuration based on the initial guess for c, whereas the 
dashed mesh shows the configuration corresponding to the final 
estimated parameter value. The five experimentally tracked 
markers (open circles) and their predicted positions (asterisks) 
are shown as well. Estimations using 17, 56, 122, and 233 
elements suggested that the Marquardt solution converged with 
56 to 122 elements: for example, the estimated c for one speci- 
men was 161, 166, 167, and 167 kPa using these four meshes, 
respectively. For the specimen shown, the initial guess for c 
was 600 kPa and the final estimate was 220 kPa. Results were 
similar for all nine tests. 

Overall, the mean values (_+standard deviations) for all esti- 
mates of the neo-Hookean parameter c were 179 ± 8.6 kPa for 
the axisymmetric inverse finite element method, 185 22 12.1 
kPa for the analytic (axisymmetric) estimation, and 188 ± 18.8 
kPa for the nonaxisymmetric inverse finite element method. 
Using standard analyses (e.g., Student's t-tests and ANOVA), 
we found no statistically significant difference between these 
three groups of results at a significance level of 0.05. As an 
additional check, however, we also performed a uniaxial stress- 
strain test on one specimen (4 × 40 × 0.18 mm in dimension) 
using another custom device in our laboratory. For a maximum 
stretch of 1.33, we found that c = 177 kPa, which fell within 
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Fig. 7 Inverse finite element result based on experimental data for an 
axisymmetrically inflated rubber membrane: six markers were tracked 
and two equilibrium configurations were used. The dotted lines show 
deformed configurations corresponding to the guessed value of c, 
whereas the dashed lines reveal the predicted configuration based on 
the Marquardt estimate for c. 

the range of values obtained using the inflation tests. Finally, 
it should be noted that all of these values of c were based on 
data collected during the loading portion of each cyclic test; 
because of slight hysteresis exhibited under cyclic loading, re- 
sults based on data from the unloading portion were less (e.g., 
157 in unloading versus 179 kPa in loading for one specimen) 
as expected. 

Discussion 
One motivation for the inverse finite element method pre- 

sented herein was the need to determine membrane properties 
in situations wherein the boundary value problem is complex. 
For example, one goal in our laboratory is to quantify the me- 
chanical behavior of intracranial saccular aneurysms, which are 
often irregularly shaped (Kyriacou and Humphrey, 1996). Nev- 
ertheless, a general method of parameter estimation can also be 
beneficial in "standard" testing situations. Recall, therefore, 
that axisymmetric membrane inflation tests have long been used 
to study the stress-strain behavior of rubber (see Treloar, 1944; 
Rivlin & Saunders, 1951). Yet, because of the nonuniform 
strain field, data are often still collected only at the pole (e.g., 
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Fig. 8 Experimental data and fit for an analytic-based estimation for an 
axisymmetrically inflated membrane. T. and k= are the principal stress 
resultants and stretch ratios, respectively. Results were similar for Ti 
versus .~.2 and T2 versus kl .  
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Fig. 9 One-quarter of a nonaxisymmetrically inflated membrane (initially 
a flat elliptical shape); the dotted line shows the FE calculated profile 
associated with the initial guess for c, whereas the dashed line shows 
the calculated profile associated with the Marquardt estimate for c. Ac- 
tual data are shown by open circles. 

see Xu and Mark, 1990; Ling et al., 1993), where k~ -= k2 and 
T~ ------ T2. The associated parameter estimations are thus limited 
because one obtains "one-dimensional" information. Our simu- 
lations showed the utility of using multiple markers, and that 
this can be accomplished using the inverse finite element 
method. 

One reason for collecting data only at the pole is that it is 
difficult to measure the principal curvatures K~ (recall Eq. (7)) 
at multiple meridional locations. This is evidenced by reports 
wherein curvatures were inferred (during incremental tests) 
from multiple rods that were pushed up by the deforming mem- 
brane (Miller et al., 1979) or pictures from a single camera and 
multiple mirrors (Bylski et al., 1986). Although recent methods 
using shadow moire' (Ling et al., 1993) or computerized edge 
detection (Hsu et al., 1995) allow curvatures to be measured 
directly, this remains nontrivial and subject to experimental 
error--curvatures are calculated from derivatives of the mea- 
sured profile. Indeed, the recent paper by Yongxiang and Jis- 
heng (1994) appears to be motivated, in part, by this difficulty. 
Hence, a major advantage of the inverse finite element method, 
regardless of the geometry of the membrane, is that one only 
needs the distension pressure and marker positions at multiple 
locations on the surface of the specimen, not numerically calcu- 
lated derivatives based on marker positions. 

For nonaxisymmetric inflations, the inverse finite element 
method is not just convenient, it is indispensable--there are no 
available analytical solutions to use in the regression algorithm. 
There are, however, only a few reported finite element solutions 
for large strain nonaxisymmetric membrane inflations (e.g., Za- 
mani et al., 1989; Charrier et al., 1989; Nied et al., 1990; Grutt- 
mann and Taylor, 1992; Kyriacou et al., 1996), and apparently 
no previous report of a fully nonlinear nonaxisymmetric finite 
element code that has parameter estimation capabilities. Thus, 
our numerical and experimental results show, for the first time, 
that estimation can be accomplished equally well in axisym- 
metric and nonaxisymmetric finite inflations, at least for neo- 
Hookean materials. 

This study is not without limitations, however. The primary 
shortcoming was the need to restrict our attention to a one- 
parameter (neo-Hookean) material. Our test system was de- 
signed specifically to test intracranial saccular aneurysms, 
which have maximum biaxial extensions at the pole of about 
1.3 (Kyriacou and Humphrey, 1996), thus we restricted the 
maximum inflations herein to the same range 5 (to ensure maxi- 
mum resolution). This, in turn, compromised our ability to test 
multiparameter constitutive relations like Mooney-Rivlin, Hart- 
Smith, etc. (see Ling et al., 1993 for different forms of W). 

5 This moderate inflation prevented limit point instabilities, which are often 
observed in similar tests--e.g. ,  see Treloar (1944) wherein maximum stretches 
were about 5.8 at the pole. 

That is, at these moderate stretches, the neo-Hookean relation 
was an adequate descriptor of the observed behavior (as ex- 
pected) whereas a Mooney-Rivlin relation was over-parameter- 
ized based on the correlation matrix for the parameters (Hum- 
phrey et al., 1990). Clearly, testing the robustness of multipa- 
rameter constitutive relation is a more stringent test of an 
estimation method, and experimental errors will likely play a 
more detrimental role in those cases. There is, therefore, a need 
for additional simulations and experiments to address this issue. 

Second, it should be noted that our objective was to show the 
efficacy of the inverse finite element method, not to rigorously 
quantify the behavior of a particular rubber membrane. It was 
for this reason that we did not impose strict control on specimen 
selection (to minimize specimen-to-specimen variations). That 
is, specimens were obtained from either the wrist or palm region 
of surgical gloves taken from different boxes, albeit of the same 
brand. Moreover, tests were conducted over a period of months, 
thus specimens were of different "ages." Although protected 
from direct exposure to light (except during testing), changes 
in lab conditions such as temperature, humidity, etc., were not 
controlled or recorded. Nonetheless, the aforementioned stan- 
dard deviations in the estimated parameter from multiple speci- 
mens were not altogether unreasonable in comparison to varia- 
tions reported in the literature--pilot experiments on the same 
day and the same specimen revealed only slight variations in c 
(e.g., 180 versus 183 kPa) due to simply removing, remounting 
and retesting the sample, thereby supporting that the aforemen- 
tioned standard deviations primarily reflected specimen-to-spec- 
imen differences. 

In summary, parameter estimation is an essential step in the 
formulation of a constitutive relation for a hyperelastic mem- 
brane. Although many aspects of parameter estimation were not 
directly addressed herein--for example, the need to limit the 
parameter search space so as to respect constitutive restrictions 
from the second law of thermodynamics and experimental in- 
equalities, to ensure that the functional form of the final relation 
is not over-parameterized, to perform parameter sensitivity anal- 
yses, and to identify confidence intervals for estimations based 
on multiple data sets and specimens (e.g., see Humphrey et al., 
1990)--we submit that the inverse finite element method is an 
indispensable tool for quantifying the mechanical behavior of 
nonlinear hyperelastic membranes and designing requisite ex- 
periments. 
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Finite Element Analysis of 
Wrinkling Membranes 
A new iterative scheme is proposed for  finite element analysis of  wrinkling or tension 
structures. The scheme is based upon the observation that there exists an invariant 
relationship, due to the uniaxial tensile stress state of  wrinkling, between some of  
the strain components referred to the local frame aligned with wrinkling in a region 
where wrinkling occurs. This enables us to update the stress state and the internal 
forces correctly taking into account the existence of  wrinkling. The finite element 
implementation of  the scheme is straightforward and simple, and only minor modifi- 
cations of  the existing total Lagrangian finite element codes for  membranes are 
needed. The validity of  the scheme is demonstrated via numerical examples for  the 
torsion of  a membrane and the quasi-static inflation of  an automotive airbag, both 
made of isotropic or anisotropic elastic membranes. The examples suggest that the 
present iterative scheme has a good convergence characteristic even for a large 
loading step. 

1 Introduction 
Analysis of wrinkling or tension structures, such as flexible 

membranes or fabric structures, has attracted substantial atten- 
tion because of their increasing application in marine, space, 
and terrestrial technology, and more specifically because of the 
simulation of airbags as a protection mechanism for drivers 
and passengers in automotive industry. There have been many 
works, theoretical and numerical, on the analysis of such wrin- 
kling structures (see, for example, Wagner, 1929; Reissner, 
1938; Kondo et al., 1955; Wu et al., 1981; Roddeman et al., 
1987; Steigrnann and Pipkin, 1989). 

In this work, we introduce another scheme for the wrinkling 
analysis that can be used in the finite element analysis of aniso- 
tropic membranes and isotropic membranes. We take into ac- 
count the possibility that the membrane may have finite rota- 
tions. The scheme is based upon the observation that a local 
region of wrinkling is in the state of the uniaxial tension, and 
that the orientation and the magnitude of this uniaxial tension 
can be obtained from an invariant relationship between the nor- 
real strain component in the direction of the local uniaxial ten- 
sion and the shear strain component in the presence of wrin- 
kling. The scheme enables us to determine the wrinkling orien- 
tation in a straightforward manner and to reconstruct the stress 
state properly for wrinkled regions, so that the correct internal 
forces may be evaluated. We implement this scheme into a 
geometrically nonlinear finite element analysis using the total 
Lagrangian formulation. The finite element implementation of 
the scheme is very simple. We do not need any special finite 
elements, but only minor modifications of the existing total 
Lagrangian finite element codes for membranes are needed. 
We demonstrate the validity of the proposed scheme through 
numerical examples for an isotropic and for an orthotropic mate- 
rial, such as, the torsion of a membrane and the quasi-static 
inflation of circular airbags. Some remarks are made regarding 
the convergence behavior of the solution scheme depending 
upon the size of a loading step. 
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2 Basic Equations and Wrinkling Analysis 

Models describing the mechanical behavior of wrinkling 
membranes are usually based on the assumption that membranes 
have zero flexural stiffness. For the analysis of membranes with 
wrinkled regions, it is necessary to have some fundamental 
assumptions as follows: (i) The configuration of the wrinkled 
region is controlled by negligibly small bending stiffness of the 
membrane. The exact shape of the membrane after wrinkling 
is not definable with only membrane theory. To describe the 
average membrane deformation that would be obtained after 
the wrinkles have been removed from the midplane, we define 
the fictitious nonwrinkled membrane which has the smooth sur- 
face as shown in Fig. 1. This fictitious nonwrinkled membrane 
gives only the average deformation. (ii) Because the membrane 
is not able to support any compressive stresses, the membrane 
will wrinkle at once when a negative stress is about to appear. 
(iii) The membrane is in the state of plane stress. 

In a small material element which is under locally homoge- 
neous deformation in the presence of wrinkling, the stress is 
locally in the state of the uniaxial tension, and in the deformed 
configuration the direction of the uniaxial tension is perpendicu- 
lar to the wrinkling direction. As will be shown, the amount of 
wrinkling does not affect the local uniaxial tension state at all. 
To describe deformations of a membrane, we rely upon the 
Cartesian coordinate systems as shown in Fig. 1. Let (Xi, X2, 
X3) denote a Cartesian coordinate of a material point in the 
undeformed configuration •0, and (xl, x2, x3) a Cartesian coor- 
dinate of a material point in the deformed configuration K(t). 
For dealing with wrinkling, we take a local frame (X~, ~'2) in 
K0 such that the orientation of the J; 1-axis is lined up with the 
material line element of ~<o that is to be along the uniaxial 
tensile direction in the presence of wrinkling in K(t). Then the 
orientation of the X2-axis is lined up with the material line 
element of K/i that is normal to the orientation of the X waxis. 
Moreover, we choose a local frame (2i, ~t2) defined on the 
fictitious nonwrinkled membrane in K(t) such that the 2L-axis 
is along the uniaxial tension direction in the presence of wrin- 
kling and the 22-axis is then aligned with the wrinkling direction. 
Note that a material line element along the .,Y l-axis in to0 is 
aligned with the 3el-axis in ~c(t). However, a material line ele- 
ment along the X2-axis in too is not mapped to be aligned with 
the 2z-axis, which is along the wrinkling direction in K(t), unless 
the shear strain with respect to the (X ~, Jr2) frame vanishes. 
Let E~, I~, ei, and ei denote the unit base vectors along the 
coordinate axes Xz, Jf~, xl, and ~c~, respectively. Assuming that 
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Fig. 1 
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the Green strain E is small that the second Piola-Kirchhoff 
stress S may be approximated by the linear relationship with 
the Green strain, we can write the stress-strain relations referred 
to the Xi - X~ coordinate system as S u = CUK~EKz, or in the 
"collapsed representation," 

I SII ] IC11CI2C13]I  Ell ] 
s ~ ?  = c ~l c 2~ c2~ l .  e ~  (~) 
$12J C 3t C 32 C33j 2E12J 

where C uKL is the fourth-order stiffness tensor and C u is the 
component of a local "equivalent elasticity" matrix resulting 
from C urn'. Note that Eq. ( 1 ) is valid regardless of the magni- 
tude of rotations as long as the strains are small. 

2.1 The State of  Stress and Strain in Wrinkl ing .  Sup- 
pose a material element ~ABCD in to0 is deformed to 
~A"B"C"D", as shown in Fig. 2, under a locally homogeneous 
plane deformation. Assume that a material line element along 
the Xt-axis in ~co is mapped to be aligned with the 2t-axis in 
K(t). Then the component of the deformation gradient F21 van- 
ishes as shown in the Appendix, and the deformation shown in 
Fig. 2 indeed represents a generic homogeneous plane deforma- 
tion possibly including wrinkling deformations. Under the state 
of wrinkling, the k~-axis will be the uniaxial tension direction, 
and the wrinkling will develop along the kz-axis. Moreover, the 
deformation from ~ABCD to I~A"B "C"D" may be thought of 
as a series of sequential deformations: first rigid rotation from 
~ABCD to E1ABCD, next the deformation of the uniaxial ten- 
sion from ~ABC D to [ ] A ' B ' C ' D '  without wrinkling, finally 
followed by  pure wrinkling deformation from ~ A ' B  'C 'D '  to 
~A"B"C"D". Hereafter we will call the state of the uniaxial 
tension in the absence of wrinkling ( E ] A ' B ' C ' D ' ) ,  "the state 
of the natural uniaxial tension," which is to be distinguished 
from the state of the uniaxial tension possibly with wrinkling, 
which is to be the genuine final state of deformation in the 
presence of wrinkling. In addition, we remark that the concept 
of "homogeneous deformation" depicted in Fig. 2 is consistent 
with the discrete nature of finite element approximation wherein 
the strains at the discrete Gaussian points may be considered 
to be representative of the true inhomogeneous deformation 
field in some average sense. 

Note that the directions of the X t-axis and the k~-axis, which 
are the uniaxial tension direction in ~o and n(t),  respectively, 
are unknown and dependent upon a material point (X1, X2). 
The stress-strain relation referred to the X ~ frame may be written 
as 

{ Slt] rc,, ~12 C13 1 { E~ i ] 
~2~? = / e2' e22 e2~/ ~2 ? 
~12j L 43' 432 C33j 2El2J 

(2) 

where ~?u = CKLTtXTSL with 

cos2/3 sin 2 fl 
[T] = sin 2 fl cos 2 

- s i n f l c o s f l  s i n ~ c o s  

2 s i n f l c o s f l  ] 
- 2  sin fl cos f l [  . (3) 
cos 2 fl - sin2fl J 

As .t~ is the axis of the uniaxial tension in wrinkling, the two 
Cauchy stress components o22 and 012 should vanish, and this 
condition leads to $22 = Sl2 = 0 under plane deformations 
(see  Appendix for proof). This condition is valid even for 
deformations with large strains although we limit ourselves to 
the small strain deformations due to the limitation of the consti- 
tutive Eq. (1). We can eliminate strains E22 and E~2 by using 
these uniaxial tension conditions, ~22 = 5 1 2  = 0. Then the 
uniaxial stress-strain relation can be obtained as 

~11 = a'/~xl with 

I 
a = C ~ 3 C ~  - C 2 ~ C ~  { C ' ( C ~ C  ~ - 82~C " )  

+ C12(C21C 33 -- C23C 31 ) 

+ ~t3(c3tc22 _ C21(~32)}. (4) 

Once material data are set and the directions of the X l-X2 
axes are known, we can calculate the uniaxial stress at the 
natural uniaxial tension. Moreover, the strain components /~22 
and /~2, satisfying the uniaxial tension condition u n d er  the 
na tura l  un iax ia l  tens ion can be obtained as 

C2lC 33 -- C23C31 
/~22 : C23C32 _ C22~33/~11 and 

C2~C~1 _ ~1C32 

2E12 = C23C32 _ C22C33 Eli (5a, b) 
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Fig. 2 Wrinkling process 
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Since the occurrence of wrinkling from VqA'B'C'D'  to 
[S]A"B "C"D" is induced by infinitesimal compressive forces due 
to negligible flexure stiffness of the membrane, there are no 
changes of the stress state due to the presence of such wrinkling, 
and the uniaxial stress-strain relation (4) remains valid. We 
now examine the change of strains during wrinkling or the 
deformation from []A 'B ' C ' D ' to ~A"B "C"D". We recall that 
the deformation of the membrane is locally homogeneous in 
Fig. 2. Then, the deformation from NABCD to [ ~ A ' B ' C ' D '  
under the natural uniaxial tension may be written as 3q = a~ J2 2 
+ a3X1 and .Yc2 = a2X2 because /%1 = 0 (see Eq. (A- l )  in 
Appendix). On the other hand, we have 21 = blX2 + b3.~l 
and .t2 = b2X 2 for the locally homogeneous deformation from 
DABCD to [~A"B"C"D". We can then write the two Green 
strain tensors for the state of the natural uniaxial tension 
( [] A 'B 'C 'D '  ) and for the state of wrinkling ( [] A"B "C"D"). 

~(a3 -- 1)1~1 @ Ej + ~ala3(E1 @E2 

. I 2 = g(b3 

+ I~2 ® 1~1) + (a~ + a~ - 1)1);1 ® 1~2 (6) 

- 1 ) I~ ,  ® 1~1 + /blb3(Ei @ E2 

+ E 2 ® E l ) + ( b ~ + b ~ -  1)Ez®FE2 (7) 

During the wrinkling process, points C '  and D'  are displaced 
horizontally to points C" and D", respectively, and there is no 
change of the deformed coordinate ~ of a material point, while 
there is some change in the deformed coordinate Y¢2. Therefore 
we can obtain the relations b~ = al, b3 = a3 and b2 ~ a2. From 
these and Eqs. (6) and (7), it follows that 

E;1 = E'(l and £;2 = E'(z. (8) 

That is, during the pure wrinkling process there are no changes 
of the strain components EH and E,2, referred to the local 
Cartesian frame (X1, X2) in K0, wherein the X ~-axis is lined 
up along the material line element in K0 that is to be aligned 
with the direction of the uniaxial tension in K(t) in the presence 
of wrinkling. Equation (8) implies that equation (5b) remains 
valid regardless of the magnitude of wrinkling because the re- 
gion under consideration is in the state of wrinkling or equiva- 
lently is in the state of the uniaxial tension. That is, Eq. (5b) 
is an invariant relation with respect to the magnitude of wrin- 
kling, valid for wrinkled states and for the natural uniaxial 
tension of no wrinkling, while Eq. (5a) holds only for the 
natural uniaxial tension. This simple observation turns out to 
provide a useful clue for finding the wrinkling orientation, 
which is to be obtained as the direction of the uniaxial tension: 
that is, combining this observation with the incremental finite 
element scheme, we can devise an efficient scheme for search- 
ing for the wrinkling orientation, as will be shown in Section 
2.3. We first examine the wrinkling criteria in Section 2.2. 

2 . 2  W r i n k l i n g  C r i t e r i o n .  From given strains and appro- 
priate constitutive equations, whether the state of the membrane 
is taut, wrinkled, or slack is determined based on wrinkling 
criteria. Up to now several wrinkling criteria have been pro- 
posed. We may categorize these into three types: the first is 
based upon the principal stresses; the second upon the principal 
strains; the third upon the principal stresses and strains. How- 
ever, there have been no discussions yet regarding the effective- 
ness or the difficulties of each criterion. We will examine this 
issue in this section. Note that we may rely upon the second P.K. 
stress instead of the Cauchy stress for describing the wrinkling 
criterion for deformations with small elastic strains. 

Consider first the wrinkling criterion based upon the principal 
stress, e.g., Contri et al. (1988) and Tabarrok et al. (1992) 
for a linear isotropic material; Fujikake et al. (1989) for an 
orthotropic material. Let S' and S: denote the principal stress 
components obtained from the constitutive Eq. ( 1 ) without ac- 

E 2 ~ a u t  

•Slope =- v 

Fig. 3 The wrinkling criterion based upon stresses (E~ ~ E2) in a linear 
isotropic material 

counting for wrinkling in the course of incremental finite ele- 
ment analysis. Moreover, we assume S 1 >- S 2. Then the criterion 
is stated as (i) wrinkling does not occur (taut) if S 2 > 0; (ii) 
biaxial wrinkling occurs (slack) if S ~ -< 0; (iii) uniaxial wrin- 
kling occurs (wrinkled) if S' > 0 and S 2 -< 0. This criterion 
has one difficulty related to the judgment of the deformation 
state. We may easily show the difficulty in the case of a linear 
isotropic material though the difficulty also occurs in an aniso- 
tropic material. We assume that strains are known at a material 
point of an isotropic membrane. Then we have to calculate 
stresses by using the constitutive equation which does not ac- 
count for wrinkling like Eq. (1), because we do not know a 
priori the state of the membrane. Let the above criterion be 
represented for an isotropic membrane, as shown in Fig. 3. We 
assume that the principal strains Et is greater than or equal to 
the principal strain E2. If the given strains are in the shaded 
domain between the E2-axis and the line of slope = - 1/u on the 
plane of the El-E2 principal strains in Fig. 3, then the following 
difficulty occurs: both principal stresses obtained from this 
strain domain will be negative in spite of the existence of the 
positive principal strain. According to the above criterion, the 
membrane should be in the slack state. In reality, however, the 
membrane is in the wrinkled state and the uniaxial stress of the 
wrinkled membrane is equal to EEl, where E is Young' s modu- 
lus. Therefore, this criterion may cause the wrong judgment in 
determining whether the state of the membrane is wrinkled or 
slack. The finite element analysis of an inflatable circular airbag 
shows that the wrinkled and the slack state at the same integra- 
tion point of some element repeat periodically in the iteration 
process and fail to converge when this criterion is applied. 

Secondly for a linear isotropic material, the wrinkling crite- 
rion based upon the principal strains can be written as follows 
(e.g., Miller et al., 1982): first of all let Et and E2 denote the 
principal strains, and assume that E~ -> E2. Then the criterion 
is stated as (i) wrinkling does not occur (taut) if E~ > 0 and 
E2 > - u E i ;  (ii) biaxial wrinkling occurs (slack) if El -~ 0; 
(iii) uniaxial wrinkling occurs (wrinkled) if E~ > 0 and E2 -< 
- uE,. For an anisotropic material, the wrinkling criterion based 
upon the principal strains has not been developed. 

Thirdly, consider the wrinkling criterion based upon the prin- 
cipal stresses and strains. This criterion was developed by Rod- 
deman et al. (1987), which may overcome the aforementioned 
difficulties illustrated for isotropic materials and moreover this 
can be applied to anisotropic materials. For an isotropic or 
an anisotropic material, the wrinkling criterion based upon the 
principal stresses and strains can be written as follows: let S I 
-> S 2 and E~ .~ E2 as before. Then 

(i) if S 2 > 0, wrinkling does not occur (taut), 

(ii) if El --< 0, biaxial wrinkling occurs (slack), and 

(iii) otherwise (S 2 <- 0 and El > 0), 

uniaxial wrinkling occurs (wrinkled). (9) 

Journal of Applied Mechanics JUNE 1997, Vol. 64 / 265 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The point of this criterion lies in that the stress and strain, 
obtained without accounting for the change in the constitutive 
equation due to the presence of wrinkling, can provide correct 
information for discriminating the taut or the slack state from 
a wrinkling state. If a deformation state is not taut nor slack, it 
must be in the state of wrinkling. 

Note that the preceding wrinkling criterion in terms of the 
second P. K. stress can be shown to agree with the criterion in 
terms of the Cauchy stress (Roddeman et al., 1987) even for 
deformations with large strains because the condition for the 
taut state S 1 > 0 and S 2 > 0 in Eq. (9) is equivalent to that 
for ~rl > 0 and a2 > O. 

2.3 Wrinkling Orientation. As discussed earlier, the 
wrinkled state is nothing but the state of the uniaxial tension, 
and the local frame .ti for K(t) has been introduced for describ- 
ing the wrinkling orientation such that the 21-axis is along the 
direction of the uniaxial tension while the k2-axis along the 
wrinkling direction. In the undeformed configuration Ko, the X, 
frame has been taken such that a material line element aligned 
with the Xt-axis in K0 is lined up with the &-axis in K(t) in 
the presence of wrinkling. Hence, the wrinkling orientation is 
determined by the direction of the uniaxial tension or equiva- 
lently by the orientation of the X taxis for a given deformation, 
which is given by/3 (see Fig. t or 2). For an isotropic mem- 
brane, this orientation may be described by the condition E~2 
= 0, by Eq. (5b), when Eu denotes the strain component along 
the line of uniaxial tension. We seek the direction of/~2 = 0 
for the wrinkling orientation in an isotropic membrane, and this 
means nothing but the direction of the principal stress, i.e., S~2 
= 0 based upon Eq. ( l ). Hence we only have to search for the 
direction of the principal stress or strain to find the wrinkling 
orientation for an isotropic membrane. Note that the stress com- 
ponents are related to the strain components by Eq. (1) for 
this computation. For an anisotropic membrane, however, the 
principal direction obtained from the use of Eq. (1) will not 
lead to the wrinkling orientation in general; for the strain com- 
ponent E~2 in Eq. (5b) may have a nonzero value under the 
state of the uniaxial tension. 

For an anisotropic membrane, as well as an isotropic mem- 
brane, the wrinkling orientation may be determined by ex- 
ploiting the relationship (5b) between the strain components 
for the state of the natural uniaxial tension. Note that for all the 
states between [~A 'B 'C 'D '  and DA"B"C"D" in Fig. 2 the two 
strain components EH and/~12 remain invariant with respect to 
the magnitude of wrinkling, and they are related by the condi- 
tion of the natural uniaxial tension, which is given by Eq. (5b). 
That is, the relation (5b) remains invariant regardless of the 
magnitude of wrinkling when wrinkling occurs, and it is valid 
for the wrinkled state and for the state of the natural uniaxial 
tension, while Eq. (5a) holds only for the natural uniaxial ten- 
sion. The consequence of this simple observation is far from 
being trivial: once a new displacement vector from an incremen- 
tal finite element analysis corresponds to a wrinkled state in the 
course of iteration for equilibrium correction, Eq. (5b) enables 
us to determine the direction of the uniaxial tension or the 
wrinkling orientation, and so to reconstruct the stress state prop- 
erly. We now describe this scheme in detail. As before we 
assume that the strain component En is along the line of the 
uniaxial tension when wrinkling occurs. We first assume one 
value ~ for/3 and transform the strain components Etj, obtained 
possibly in the course of equilibrium iteration in finite element 
analysis, to the components/~H referred to the local coordinate 
system ( ~ ,  X2) which takes the orientation angle/3 from the 
Xz coordinate system. (The Xraxis is a possible candidate for 
the X Faxis and might be depicted in Fig. 1 by replacing/3 with 
/) and J21 with J¢,.) That is, we have {/~u, /~=, El2} T = 
[~i']" {En, E=, Eu} r where [i"] indicates [T] of Eq. (3)with 
/3 being replaced by D. We next find /3 = /3 for which the 

condition of the uniaxial tension (5b) is satisfied. To insure the 
uniaxial tension state, we use the following procedure: 

(i) check/~u > 0 for an assumed value of/), 

(ii) set/~n =/~Jt, 

(iii) calculate El2 and E22 from Eq. (5a, b), and 

(iv) take/3 =/~ if E12 =/~12 and E22 - /~=. (10) 

The wrinkling strain E~, which is never negative, is a measure 
of the "wrinkledness" of the membrane, is given by Ew = E= 
-/~22. The wrinkling orientation/3 lies between 0 deg and 180 
deg due to symmetry, and we have to check every possible 
direction. The key procedure for determining/3 is to solve the 
equation f(/3) = /~u  - /~u = 0. For solving this equation, we 
first divide the domain of 0 deg - 180 deg into many small 
regions with a uniform spacing to check the sign change of the 
function f(/3). We then use Muller's method (Gerald et al., 
1984) when the possible range of/3 reduces down to a smaller 
region. Once wrinkling occurs, there exist only one solution for 
/3 that satisfies every condition in Eq. (10). 

Once the wrinkling orientation or/3 is determined together 
with the strain components Eu = En, fi:12 = /~u and E22, Eq. 
(4) is employed for reconstruction of stress for the wrinkled 
state. In a finite element scheme this new stress state will be 
used for updating the tangent stiffness matrix and the internal 
forces for the next iteration. 

3 Finite Element Formulation 
A total Lagrangian finite element formulation based upon the 

principle of virtual work is used for membrane finite element 
analysis (Bathe, 1982), into which the foregoing scheme of the 
wrinkling criterion and the search for the wrinkling orientation 
are incorporated. We may then obtain the following secant equa- 
tion: 

("+1)El(c) = ("+1)P1 (11) 

where e indicates the nodal displacement vector in the global 
finite element equation. Equation (11 ) represents the balance 
of the internal force and the external force for each nodal de- 
gree-of-freedom, and it is nonlinear in the nodal displacement 
('+ ~)e. For solution of this nonlinear equation, we rely upon a 
Newton-type iterative scheme via Taylor series expansion, and 
we can finally obtain 

(n'k)Klj (n'k+l)•cj = ("+1)Pi - ("'k)Fl (12) 

where (,,k+ 1)Ac s is the nodal displacement increment for the (k 
+ 1 )th iteration, such that 

(n 'k+l )c j  = (n'k)cy "4- ( n ' k + l ) A C j  and 

("+~)cj = (")cj + Y, ("'k)Acs = lira ("~)Cs, 
k k ~  

(,,k)Kl. ' _ 0 ("'k)Fl 
Ocj 

f v  ON~ 0 ("k)x,, cKLQ P 0 (,.k)& ON ~ 
= OOXK ox~ oxa o--~ dV 

f v  ON" (,.k)SXL ON ~ 
+ o 6,,i - ~ x  OXL dV.  (13) 

Observe that the stiffness matrix and the internal force in Eq. 
(12) are updated at each iteration because of the possibility of 
wrinkling. The wrinkling criterion (9) is applied at every itera- 
tion to check the deformation state, and the search for the wrin- 
kling orientation and the reconstruction of the stress for a wrin- 
kled region are carried out if the integration point under consid- 
eration is in the wrinkled state. This iteration procedure 
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corresponds to a quasi-Newton scheme for wrinkling structures 
although the stiffness is updated at every iteration; because the 
compressive membrane stiffness has not been relaxed in the 
first term of the stiffness matrix (13) in the presence of wrin- 
kling, and the tangent stiffness is only an approximation to the 
first derivative of the true internal force u,+ UFs(c). 

Note that we cannot obtain a true equilibrium configuration, 
without updating the stress state properly for the wrinkled re- 
gions, although we may reach the convergence for a given 
loading step in the incremental finite element analysis; a correct 
internal force vector F,(c) is not obtained unless the stress state 
is properly updated for wrinkled regions. In passing, we remark 
that the algorithms for the proper stress update, particularly for 
an anisotropic membrane, as discussed in Section 2, are not 
reflected in most of the implicit commercial package codes 
currently available. 

The iteration process for an equilibrium position is carried 
out in a two-stage procedure (Contri et al., 1988) only for the 
first loading step. The first stage consists in searching for an 
equilibrium position of the membrane with both of the compres- 
sive stresses and the tensile stresses active. Once the equilibrium 
position is obtained, the compressive stresses are relaxed at the 
next stage as follows. Given a new estimation of the nodal 
displacements in the processes of equilibrium correction, at each 
integration point of an element the judgment is made on the 
wrinkling criterion, whether it is taut, wrinkled, or slack. Here 
we use the wrinkling criterion (9) based upon the principal 
stresses and strains. After this decision, the following proce- 
dures will be used: In the taut situation, the stresses of the 
membrane are determined by the normal analysis without wrin- 
kling. In the presence of wrinkling, the stresses are determined 
on the basis of the scheme for the wrinkled membrane, de- 
scribed in the previous section. In the slack situation, the stresses 
contain only zeros. When the membrane is in the wrinkled 
state, the special procedure discussed in Section 2.1 and 2.3 is 
required for the reconstruction of the stresses. Such a stress 
calculation is required to evaluate the stiffness matrix and the 
internal forces in Eq. (12) during the iterations. For loading 
steps except the first, the iteration process for an equilibrium 
correction is carried out in the one-stage procedure which corre- 
sponds to the second stage of the first loading step. Note that 
the present approach just follows the standard finite element 
analysis procedure except that it has incorporated into a finite 
element code the scheme for the wrinkling criterion, for the 
wrinkling-direction search and for the determination of the ten- 
sile uniaxial stress for the wrinkled region. It requires no special 
element formulation nor special treatment, and this finite ele- 
ment analysis can be carried out with minor modifications of 
the existing total Lagrangian finite element codes for mem- 
branes. For illustrating numerical examples, we have written 
our own membrane finite element code into which the aforemen- 
tioned scheme has been incorporated. 

4 N u m e r i c a l  Examples  

4.1 Torsion of a Membrane. For the first example, we 
consider a circular membrane attached to a rigid disk at the 
inner edge and to a guard ring at the outer edge (Roddeman, 
1991 ). Turning the rigid disk causes wrinkling of the mem- 
brane. The scheme which accounts for wrinkling should be used 
to calculate strains and stresses. For the finite element analysis, 
120 four-node isoparametric membrane elements are used as 
shown in Fig. 4(a) .  The nodal points on the outer circle are 
fixed in space. The nodal points on the inner circle are rotated 
over ten degrees. A material behavior is assumed as follows: 
Young's modulus E = 1.0 x 105 Pa and Poisson ratio u = 0.3 
for a linear isotropic material; Ey~ = 1.0 x 105 Pa, Ey2 = 1.0 
x 106 Pa, u~2 = 0.3 and G12 = 0.385 x 105 Pa, referred to the 
Xi frame in Fig. 4, for a linear orthotropic material. It turns out 

( 

/~lOm 

/ f  

Thickness = 4,0× 10 .3 m 

(a) Undeformed shape 

" i ~Y 

(b) For the linear isotropic membrane (e) For the linear orthropic membrane 

Uniaxia l  tensi le  stress : 

Wr ink l ing  strain : o 

Fig. 4 Deformed shapes, the uniaxial tensile stress and the wrinkling 
strain on a wrinkled region for torsion of a circular membrane (144 ele- 
ments) 

that the full 2 x 2 Gaussian integration is required for obtaining 
a reliable solution without any possible zero-energy modes. 

The deformed shapes for the linear isotropic and orthotropic 
membranes are shown in Fig. 4(b) and 4(c),  respectively. 
Furthermore, the direction and the magnitude of the uniaxial 
tensile stress are indicated by using the direction and the length, 
respectively, of the arrow at each integration point in the wrin- 
kled region. The magnitude of the wrinkling strain is also indi- 
cated by using circles of varying magnitude. Regions which are 
not indicated with arrows and the circles means a taut region. As 
expected, the isotropic problem shows itself to be rotationally 
symmetric. In the orthotropic membrane, wrinkling occurs 
mostly on the left-lower and the right-upper parts. 

4.2 An Inflatable Circular Airbag (Automotive Airbag). 
Now consider an inflatable circular airbag that initially consists 
of two flat circular pieces of fabric sewed together along the 
edge. In this case the unfilled (undeformed) structure exhibits 
a flat and stress-free surface which, when filled to a final vol- 
ume, will experience stressing and wrinkling of the fabric. This 
wrinkling is due to the shrinkage in circumferential direction 
of the airbag as it is inflated. The inflatable circular airbag is 
modeled as two parallel circular planes using three and four- 
node elements as shown in Fig. 5. In the initial configuration, 
the two circular planes of the front and the back coincide with 
each other. The action of the gas inside the airbag is assumed 
to be a uniform pressure distribution on the inner surfaces of 
the bag. As before, we use the full 2 x 2 Gaussian integration 
to remove possible zero-energy modes. 

Consider the airbag to be made of the same two flat isotropic 
membranes. By applying appropriate boundary conditions in 
the horizontal midplane, we need only to model one quarter of 
the bag. The finite element model for a quarter airbag consists 
of 20 total elements (four in circumferential direction and five 
in radial direction). A linear isotropic material behavior is as- 
sumed as follows: E = 6.0 x 107 Pa and u = 0.3. The thickness 
is 0.4 x 10-3 m. The airbag is subjected to a uniform pressure 
from 0 to 10 kPa. Figure 6 shows the vertical displacement of 
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Front  plane Back plane 

Fig. 5 The airbag model 

the center point and the radial contraction of a point of the 
circumference with respect to the increase in the internal pres- 
sure for two cases: one obtained with wrinkling being taken 
into account and the other obtained from pure membrane theory 
with no wrinkling being taken into account. The difference 
between both cases is greatest in the low pressure region. As 
the pressure increases, the displacement difference is smaller 
since the wrinkled region decreases. 

Consider next an airbag with front and back anisotropic mem- 
branes, modeled with 264 elements. The airbag is subjected to 
the uniform pressure of 5 kPa. The linear orthotropic material 
behavior is assumed as follows: Eyt = 2.0 × 10 ~ Pa, Ey 2 = 2.0 
× 108 Pa, ut2 = 0.1, Gt2 = 0.385 × 105 Pa: material principal 
angle 0~ = 0 deg for the front plane membrane and material 
principal angle 02 = 45 deg for the back plane membrane (see 
Fig. 5). The thickness is 0.4 × 10 -3 m. Figures 7 ( a ) - 7 ( d )  
show the overall deformed shape, the deformed shape of the 
front plane, the top view and the side view, respectively. Fur- 
thermore, the uniaxial tensile stress and the wrinkling strain 
are indicated, as in the aforementioned torsion case, at each 
integration point on the wrinkled region. The region with no 
arrows and circles means a taut region. We add that no rigorous 
treatment of the present anisotropic airbag problem has been 
reported in the literature, and that the existing commercial pack- 
age codes cannot handle this problem because they are lacking 
in the correct stress update algorithm for wrinkling of aniso- 
tropic membranes. In passing, we point out that the most of the 
commercial packages rely upon the wrinkling criterion based 
upon the principal stresses discussed in Section 2.2, and they 
updatethe stress state for the wrinkled region by replacing the 
negative principal stress by zero stress. Hence, the solution 
process via such commercial package codes fail to converge for 
the present airbag problem, and no comparisons were possible. 

0.20 

O. 15 P ' " ~  ~" ...... 

"~ 0.10 -- ,~,. ~ Vertical displacement Radial contraction 
v ,2 at the center --+-- (a) 

i 
0.00 

. . . . .  . . . . .  . . . .  , . . . . .  -0.05 

-0 IO 

(a) : Displacements obtained with wrinkling being taken into account 
(b) : Displacements obtained from pure membrane theory wifll no 

wrinkling being taken into account 

Fig, 6 The vertical displacement of the center point and the radial con- 
t ract ion of an inflatable circular airbag modeled with 20 elements (4 × 
5) fo r  a quarter  plane 

(a) Deformed shape 

? Z. ~ 

x! 
(b) Front plane 
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Fig. 7 

(c) Top view (d) Side view 

Uniaxial tensile stress : - >  

Wrinkling strain : o 

Deformed shapes of an airbag (01 = 0 deg and 0= = 45 deg) 

To examine the convergence behavior of the present finite 
element scheme, we plot the total number of iterations up to 
convergence versus the size of the loading step in terms of the 
rotation angle or of the pressure in Fig. 8 wherein only one 
loading step is chosen for analysis. The maximum size of load- 
ing step is chosen to be ten degrees for the torsion of the 
isotropic circular membrane and 10 kPa for quasi-static inflation 
of the isotropic airbag, since the resulting membrane strains are 
no longer small beyond this loading. For both of the examples, 
we see that the number of iterations for convergence decreases 
as the size of the loading step increases. Particularly for the 
airbag, it is noticeable that the total number of iterations drasti- 
cally decreases from the early stage as the size of the loading 
step increases. The abrupt drop of the total number of iterations 
for this case is due to the fact that the wrinkled or slack regions 
drastically decrease in the early stage as the pressure loading 
begins to increase. These numerical examples suggest that the 
present scheme works well for the range of small strain defor- 
mations, even for a large loading step. 

5 Conclusions 
With the aid of the correct stress update based upon the 

observation regarding the invariant relation between some of 
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Fig. 8 Convergence behavior according to the size of a loading step for 
the torsion of a circular membrane and for the quasi-static inflation of 
an airbag (linear isotropic} 
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the strain components referred to a coordinate system aligned 
with wrinkling, a simple but efficient scheme is proposed for 
finite element analysis of wrinkling. This scheme is found to 
be applicable to an anisotropic membrane and an isotropic mem- 
brane. Moreover, it requires no special finite element develop- 
ment, but only minor modifications of the existing total La- 
grangian finite element codes for membranes are needed. Two 
numerical examples have been used to demonstrate the validity 
of the proposed scheme: one is the torsion of a membrane 
and the other the inflation of an airbag used in the automotive 
applications. The numerical examples suggest that the present 
scheme retains good convergence behavior even for a large 
loading step within the range of small strain deformations. 
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A P P E N D I X  
We here show that the conditions 0-22 = 0-12 = 0 leads to the 

conditions ~ 2 2  = ~ 12 = 0 in terms of the second P.K. stress for 
homogeneous plane deformations. 

Consider a locally homogeneous plane deformation dX 
dx.  Suppose a material line element dX  = dJflEl in •0 is 
mapped to dR in K. Then we have dR = F d X  = dXl(F~lel + 
P2~ e2). Recall that a material line element along the X l-axis is 
mapped into a material line element along the 21-axis. Therefore 
we have 

F21 = 0. ( A - t )  

Under the present homogeneous deformation, because of Eq. 
(A1)  the condition 0-22 = 0-1z = 0 leads to the two equations: 
FjiF2zS 12 +/f?12F22 ~ 2 2  = 0 and F222S 2z = 0. This yields S2z = 
$12 = 0. Similarly we can show that the conditions $22 = S~2 
= 0 can be transformed to the conditions 0-22 = 6-~2 = 0 for 
plane deformation. 
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Weight Functions for Notches: 
Constructive and Variational 
Definition 
Weight functions for  notches or cracks, which express the intensity of  the stress 
singularity at the tip as functionals of  the loadings present, can be defined either as 
combination of  eigenfunctions or as variational derivatives of  energies. The two 
definitions are equivalent. 

1 Weight Functions 
Consider the notch in the finite specimen shown in Fig. 1. It 

extends between the angles ~ = 0 and w = ~2 around its tip, 
from which the radius r is counted. It is stressed suitable far 
away from its tip either by a line force f ( r ,  w) or a dislocation 
with Burgers vector b ( r ,  co) or both. Near the tip the displace- 
ment will vary like r s times a function of the angle co, giving 
a stress ~r = Kr ~- IF(~o) near the tip. The exponent s is deter- 
mined by the boundary conditions (free-free, or fixed-fixed, or 
fixed-free) along the flanks; it depends only on the geometry 
but not on the loading. The wedge with angle ~ = 27r is a 
crack; for this case s - 1 = -½. The angular function F ( w )  is 
determined by equilibrium and compatibility. The stress inten- 
sity factor K, on the other hand, must be a functional of the 
sources [b( r ,  co), f ( r ,  w)] t, 

= fm H(r ,  w)[b( r ,  w), f ( r ,  K w)]tdA,  (1) 

the integral being taken over the specimen area A. The func- 
tional H has been called weight function by Bueckner (1970). 
There are two, seemingly different ways to define and compute 
weight functions, a variational and a constructive one. 

1.1 Constructive Definition. For the special case of an 
isotropic wedge in antiplane strain Sham and Bueckner (1988) 
considered the interaction energy between two fields, with dis- 
placements varying like u ~1~ ~ K<~)r ~ and u ~2~ ~- K<2)r-% which 
is a quadratic form in K <l) and K ~z>. This approach requires 
proof that with the exponent s also ( - s )  satisfies the boundary 
conditions. Sham and Bueckner (1988) showed this to be the 
case for a bimaterial wedge in antiplane strain. Belov and Kirch- 
Her (1995a, b; 1996) extended the proof to arbitrary loadings 
(and dislocations present) in elastically anisotropic, angularly 
inhomogeneous wedges. No variational argument is invoked in 
this type of reasoning. 

1.2 Variational Definition. For the crack Bueckner 
(1970, 1989) considers the variation of an interaction energy 
between two loading systems, (1) and (2) with a virtual change 
6a in the crack length a. This is equal to a quadratic form in 
the two stress intensity factors K ~t~ and K ~2~, No change of 
strength of the singularity is involved, it remains s - 1 = -½ 
for the tip at a and at a + 6a. Is this type of variational argument 
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restricted to the self-similar geometry of a crack or can varia- 
tional principles also be invoked for wedges? For a wedge the 
virtual change in geometry to be considered is presumably a 
change 6f~ in wedge angle f~ (Markenscoff, 1994). Because s 
is a function of geometry, such a change is associated with a 
change 6s in the strength of the singularity. 

The variational approach to weight functions for cracks was 
developed by Rice (1985a, b, 1989). He extended the defini- 
tions to three-dimensional situations, and dislocations and inclu- 
sions as sources of stress. He showed how the weight function 
becomes a crack front weight function useful for handling per- 
turbations of the crack shape. Rice's theory was applied to 
practical problems of interest by GaD and Rice (1986, 1987, 
1989) and by GaD (1989). GaD also extended the theory to 
interfacial cracks, the first step to the consideration of inhomo- 
geneous media. 

Markenscoff (1994) pointed out that, although the second 
definition has been used for cracks and the first one for notches, 
the two definitions should be equivalent, and showed explicitly 
that for a crack they are. In this paper it will be shown that the 
variational and constructive definitions of weight functions are 
equivalent for an angularly inhomogeneous wedge. As special 
cases this comprises homogeneous wedges, cracks, interfacial 
cracks, and cracks impinging on interfaces. The proof requires 
construction of the eigenfunctions of the wedge and their pertur- 
bation with changes in geometry. 

2 Eigenfunctions of the Wedge 
Following Kirchner (1987, 1989) and Belov and Kirchner 

(1995a, b; 1996) we consider a wedge where the elastic con- 
stants Cukt(~) vary explicitly with the azimuthal angle co. A 
special case would be the composite wedge of Sham and Bueck- 
Her (1988), where the elastic constants are piecewise homoge- 
neous. The stresses cr U can be derived from the displacement 
vector u by Hooke's law, 

~ru = Cijk,( w )Ow,, (2) 

or from a stress function vector • according to 

~ril = 02#2i, ~ri2 = -Ol(Pi. (3) 

Both definitions must give the same stress, which yields a con- 
sistency condition for the entity (u ~ ) ' :  

{N(w)Or - I r - 'O~}[u( r ,  w)O(r ,  w)]'  = 0, (4) 

where N ( w )  is a certain combination of the elastic constants 
Cu~(w ). The basic idea of using a first-order differential equa- 
tion for the displacement and stress function vector instead of 
the usual second-order differential equation in the displacement 
alone is well explained in Ting's book (1996). With both u 
and • being vectors with three components, [ u (r, w ) ~( r, w ) ]' 
has six components. The matrix N is a six-by-six matrix, I 
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Fig. 1 Notch in a finite specimen. The tractions are prescribed on SN 
and ST, the displacements on Su, and body forces of strength f or disloca- 
tions with Burgers vector b are present in A. The reciprocity theorem is 
applied to the dashed contour L. 

is the six-by-six unit matrix. The solutions of the first-order 
differential Eq. (4) are both compatible, because the existence 
of a displacement u was assumed, and equilibrated, because 
the existence of a stress function • was assumed. Assuming 
separable solutions of the form 

[u( r ,  w ) ~ ( r ,  w)] '  = rW(~)(w)[h  g] ' ,  (5) 

where [h g] '  is an excitation vector, the superscript t in [ ]' 
denotes transposition and VC')(w) is a six-by-six matrix, one 
finds the differential equation 

dV(" ) (w) /dw = sN(w)VC")(~) (6) 

for VC'~(w) with the solution 

V")(w) = Ordexp { s f~'N(cOd@ . (7) 

Use of the ordered exponential, rather than a simple matrix 
exponential, is necessary, because in general matrices N ( a )  for 
two different arguments o~ do not commute. Because of this 
noncommutativity, V ("~(w) is not the inverse of V('~(w), and 
the complex number s is not an exponent but an index. The 
eigentensors of positive and negative index are, however, re- 
lated by 

T[V( '~ (w) l tTV{-n(w)  = I, (8) 

where T is a constant matrix composed of three by three identity 
matrices 

T =  (01 ~ ) .  (9a) 

For later use we note the identity 

TN = N'T. ( 9b ) 

3 Eigenvalues 
If both notch faces, w = 0 and w = f~ are to be kept traction- 

free near r = 0, the boundary conditions are, for small r, 

• (r ,  0) = ~ ( r ,  f~) = 0. (10) 

If VC*)(w) is decomposed into three by three blocks according 
to 

VC~)(w) = (W ?}(w) V6")(w)~ ~° (w) V,~.,)(~) / , (11) 

Eq. (10) implies that the determinant of the southwest block 
vanishes, 

I v W ( ~ ) I  = 0. (12) 

This is the nonlinear eigenvalue equation for the index (s).  
Belov and Kirchner (1 995a) have shown that, whenever (12) 
is satisfied, also 

Iv~ ")(fl)l = o. (13) 

Thus, whenever (s) is an eigenvalue, also ( - s )  is one, a fact 
absolutely necessary for the constructive definition of weight 
functions. The point is that free-free boundary conditions deter- 
mine both the index (s) and the lower part of the exciting 
vector, g = 0. Other boundary conditions are met by similar 
equations. For example, fixed-fixed boundary conditions, u (r ,  
0) = u ( r ,  fi) = 0, are satisfied by h = 0 and [V~S)(fb] = 0. 

4 Orthogonality 
Belov and Kirchner (1995a) proved the following relation 

between eigentensors of two different indices, V(')(w) and 
V{'~(w): 

f (t + s) [V(S ) (co ) l ' rN(w)g" ) (w)dw 

= {[VC")(~)I 'TVU)([2)- T}. (14) 

This result is independent of any boundary conditions. Multiply 
now (14) by exciting vectors (h 0) '  from the right, and (h* 0) 
from the left, these being of the required form for flee-free 
boundary conditions. One obtains 

f,j' (t + s ) (h*  0) [ V ( S ) ( ~ ) ] ' T N ( w ) V ( ° ( w ) d w ( h  0) '  

= (h* 0){ [VU)(Q)]tTVU)([~) - T] (h 0) '  

= r ~[u*{')(r, ~ )  O]Tr-'[u(t)(r, ~ )  0]t - (h* 0)T(h  0) '  

= r - (~ ' - ' )0 -  0 = 0, (15) 

where [u*C'°(r, f~) 0] and [uU)(r, ~2) 0] '  are the fields excited 
by (h* 0) and (h 0) ' ,  respectively. One concludes that, if both 
s and t fulfill free-free boundary conditions, 

unless (s + t) = 0, 

(h* 0) [V(" ) (w)] t rN(w)V( ' ) (w)dw(h  0) '  = 0. (16) 

The same argument holds also for fixed-fixed, fixed-free, 
and free-fixed boundary conditions. For fixed-fixed ones, for 
example, the exciting vectors are (0 g* ) and (0 g)% Multiplica- 
tion with the exciting vectors reduced the eigentensors V{")(w) 
to eigenvectors VU)(~)(h 0) ' .  Since for any choice of bound- 
ary conditions, with s being an eigenvalue, also ( - s )  is ein 
eigenvalue, there exists always one eigenvector which is not 
orthogonal to the one considered, but all the eigenvectors are 
self-orthogonal. The orthogonality situation suggests that the 
pairs of eigenvalues, (s) and ( - s )  have special status, a fact 
already exploited by Sham and Bueckner (1988) for antiplane 
strain and isotropy, and that the pairs V (~) and V (-') of eigen- 
tensors have special status, as exploited by Belov and Kirchner 
(1995a) for generalized plane strain and angular inhomogeneity 
and anisotropy. 

5 Interaction Between Two Eigensystems r s V  (s) and 
r t V  ( t ) 

Consider now two fields, with eigenvalues (s) and (t) ,  being 
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excited by the sources (h* 0)  t and (h 0)' ,  respectively. The 
tangential tractions of the latter are 

[b t ] '  = r-~d[u ~]'/dco = t r ' - W ( w ) V ° ) ( c o ) [ h  0]'. (17) 

The interaction between the s-field and the gradient of the t- 
field is 

e (''It) = trS+t-l(h * O)[V(S)(co)] 'TN(w)V(t)(w)(h 0) ' ,  (18) 

and integrated between co = 0 and w = ft over the arc element 
rdw, 

I) E (*,') = tr'~+'(h * 0) [V(~)(w)] 'rN(w)V( ' ) (co)dw(h 0)' .  

(19) 

With (16) one concludes that 

unless (s + t) = 0, E (~m = 0. (20) 

The only interaction to be considered is between V (-*~ and 
V(+S), 

E (-'~s) = s(h* 0) [V(- ' )(co)l tTN(w)V(~)(co)dw(h 0)' .  

(21) 

If the geometry of the wedge is changed, from an angle f2 
to fl + 6f~, only the variational change 6E (-~m of E (-~/*) has 
to be considered, the changes of all other interactions remain 
zero. 

6 Derivatives With Respect  to the Index 
By definition (6), V(S)(co) is not only a function of the argu- 

ment co, but also of the index (s). What is its derivative with 
respect to this index? Try to write 

dV(')(co)/ds = V(S)(co) J(a)dce, (22) 

with an unknown integrand J(ce). Forming the cross derivatives 
from (22) and (6) one obtains 

f0o d2V(')(co)/dcods = sN(CO)V('~)(CO) J(o~)doz + V(*)(CO)J(CO) 

= N(CO)V (s) + sN(w)[dg(s) (co) lds] ,  (23) 

which leaves, by comparison, 

J(co) = [V(S)(co)]-W(co)g(")(co) (24) 

and the desired expression for the derivative 

dV(~)(co)/ds 

= U(")(co) [V(~)(cO]-~N(a)V('~)(a)dm (25) 

For co = f~ one obtains 

dV(S)(f~)/ds = V(~)(f~)TY(")(f~) (26) 

with 

Y('~)(~) = [V(-'*)(CO)]tTN(w)V(")(CO)dco. (27) 

Comparison with (21) shows that 

E ( .,m = s(h* 0)Y(*)(~)(h 0)' .  (28) 

Without realizing the connection to dV('~°/ds, Belov and 
Kirchner (1995b, 1996) gave the same definition for Y('~)(f~) 
in their derivation of weight functions. The identity (28) will 
provide the link between the constructive definition of weight 

functions, as given by Belov and Kirchner ( 1995b, 1996) and 
the variational one requested by Markenscoff (1994) and being 
developed here. The transpose of Eq. (27), written for ( - s )  
instead of (s), reads 

f? [Y(-")(f~)]' = [V(-*)(co)]tNt(co)TVa)(co)dco. (29) 

Comparison of (27) with (29) shows that, because of (9b), 

[y(-s)([~)]t = y(.,.) (f~). (30) 

With (30), the transpose of Eq. (26), written for ( - s )  instead 
of s, reads 

d[V(- '~)( f2)] t /d(-s)  = YC~)(f2)T[V(-~)(fft)]'. (31) 

7 The Singularity s Changes With the Angle 
Free-free boundary conditions are satisfied by determining 

the eigenvalues s for the wedge angle f~ from the secular Eq. 
(12) and the eigenvalue s + 6s for a wedge of angle f~ + 6f~ 
from 

Iv /+Ss) (~  ÷ m ) l  = o. (32) 

For fixed-fixed, fixed-free, and free-fixed boundary condi- 
tions the determinants of the other blocks have to vanish. Ac- 
cording to the last section one has the expansion 

V(S+6")(f~ + 6f2) = V(")(f2) + [V(S)(f~)TY('~)(f~)]6s 

+ [sN(f2)V(~)(f2)]6f2. (33) 

The southwest block of (33) reads 

V~S+~')(f2 + 6f~) = V~~(~2) + A6s + BSf~ (34a) 

with 

A = [V('°(~)TY(")(~)] 3 (34b) 

B = [ sN(~ )V(n (~ ) ]3 .  (34c) 

One sees that according to (32) the change 6s is determined 
from 

[V~*)(Q) + A6s + Bdf~l = 0, (35) 

where both 6s and 6Q are small. This fact allows expansion of 
the determinant in the form 

I vW(f~)  + A6s + B6g~I 

= IV~")(f~)[ + {cof[V~°(~)10}A,j6s 

+ {cof [V~*)(f~)]o}Bij6fl, (36) 

where cof denotes the cofactor. According to (35) and (32) the 
left-hand side and the first term on the right are zero. One 
concludes that 

6sl6~ = - { cof [V ~'~)(~2)]o}Bul { cof [V ~)(~)]ij}Aij. (37) 

8 Variational  Derivative 
We want to compute the change 5E (-'~/'~) of the interaction 

E (-*/*) if the angle of the wedge is changed from ~ to f~ + 6Q. 
This change entails also a change in the index from s to s + 
&. Formally, without specifying the operator 6 for the time 
being, 

6E (-'Is) = 6 e(-~/'~°(co)rdco 

Yo" 
= 6{ [V~-")(co)]'TN(co)V(')(co) }dco 

f 
~+Sf~ 

+ e(-'lS)(w)rdco. (38) 
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The second term is simply 

e(-"/*)(f~) 6~L (39) 

the unchanged energy density in the newly added domain. The 
first term is, now being understood that no variation with f~ is 
necessary any more (that was taken care of by the second term), 

{6[V(-*)(a)I'ITV(')(fl) + [V(-~)(f~)ltT{eV(*)(a)}. (40) 

From (26) and (3 l ) one has 

6V(~)(~) = VC')(f~)TY(')(f])6s, (41a) 

{6[V(-~)(f~)] t} = 6(-s)[Y(-~)(~2)]'T[V(-'~)(f~)] '. (41b) 

Therefore, 

6E(-S/*)(~) 

= 6(-s)y(s)(f~)T[V(-*)(O)l'TVC')(f~) 

= Y(S)6(-s) + YC')6s = 0, (42) 

where (8) and (30) have been used. This result is obtained if 
s is varied to s + 6s and - s  to - ( s  + 6s). As Markenscoff 
(1994) has shown, what has to be considered is the unchanged 
field against the changing field as the geometry is being 
changed. In other words, the variation of ( - s )  to - ( s  + 6s) 
while (s) remains (s) .  This leaves 

6E ~-sm= Yc")6(-s). (43) 

9 E q u i v a l e n c y  

Consider now the interaction of an (unstarred) field with 
index (s) and sources K(h 0) t, called regular, with a (starred) 
one with index ( - s )  and source K*(h* 0) ' ,  called fundamental. 
By adding to the starred field an expansion of all possible eigen- 
functions with all other possible solutions of (12) as index, the 
following boundary conditions for tractions T* and displace- 
ment u* can be satisfied for the specimen of Fig. 1 : 

T* = 0 on St+ SN (44a) 

u* = 0 on Su. (44b) 

The specimen is subjected to an external loading system which 
consists of body forces f, prescribed surface tractions F on ST 
and SN, and also of prescribed displacements U at the remainder 
Su of the body surface. 

9.1 Constructive Definition. Apply the reciprocity theo- 
rem (without variation in the notch angle f~) to the regular and 
fundamental field. For a subdomain A '  < A, bounded, as shown 
in Fig. 1, by a closed contour L which consists of a circular arc 
R0 of radius r0, the boundaries Sr and Su, and the remaining 
part SN of the notch faces, the reciprocity theorem can be written 
as  

T * U a L  

= f (Tu* - T*n)dL  = 
~ R  0 

g = (u*~*)T{d[u ~lTda,,}dw = E(-"sL (45) 

The latter equality follows from (19). Shrinking r0 to zero 
leaves E (-"*~ unchanged. From comparison with (28) one has 

E ~-~/'~) = sK*(h* 0)Y(~)(h 0)tK 

= ( - f A  U* fdA-  fsr+s u*FdL + fs, T*UdL} ,  (46) 

which is the constructive definition of weight function as de- 
scribed in Section 1.1. It is identical to Eqs. ( 4 4 ) - ( 4 8 )  of 
Belov and Kirchner (1996). (They define the intensity of their 
regular field by -K(27r)"-l/s rather than K, and take K* = 
(27r) ~- 1 as the intensity of their fundamental field.) 

9.2 Variational Definition. Now take the variation of 
(46) 

6E~-'/" = -fA (6u*)fdA - fsT+s (6u*)FdL 

I_ (6T*)UdL + u*f6A. (47) + 
L ~  

,i 

According to (43) this gives, since the starred field with ( - s )  
is being varied, 

K*(h* 0)YC~)(h O)tK6(-s) 

= (~u*)fdA - f~>sN(~U*)FdL 

+ f (6T*)UdL, (48) 
v 5 "  it 

the last term of (47) corresponding to (39). After division by 
6s, 

6E(-'~m/6s = - K * ( h *  0)YC')(h 0 ) 'K  

= -fA (6u*/6s)fdZ - fs~+s, (6u*/&)FdL 

+ f~,, (6T*/6s)UdL. (49) 

This equation expresses the quadratic form in K* and K in 
terms of the weight function (6u*/6s), which is the variational 
definition requested by Markenscoff (1994). 

10 Discussion 
The derivation presented shows that the variation ~s of the 

singularity strength s which is induced by a change 6f~ of the 
notch angle is important, the change 6f~ itself leads only to a 
trivial term. Comparison of (46) with (49) shows that the varia- 
tion 6u* of the eigenfunction is directly related to the eigenfunc- 
tion u* by 

6u*/6s=-u*/s ,  or 6 ( u ' s ) = 0 .  (50) 

Equation (5) provides the relationship between the constructive 
definition of weight functions, which uses u* and the variational 
one, which uses 6u*. The argument at the beginning of Section 
9, where the boundary conditions of the finite specimen are 
satisfied by adding the fields of other eigenvalues implicitly 
assumes completeness of the eigenfunctions. For a long time 
completeness had not been proven, not even for homogeneous 
wedges, the principal difficulty being that the differential opera- 
tor {N(aJ)0r - Ir ~0~} of Eq, (4) is not self-adjoint. Recently 
Kirchner and Alshits (1996) calculated the Green's function 
for the inhomogeneous wedge, and proved completeness of the 
eigenfunctions. Because of orthogonality the eigenfunctions do 
not interact, which is the reason why Markenscoff 's (1994) 
variational derivative is finite precisely for the pair V ~-') and 
V <*) and zero for all others. It is also the reason why weight 
functions (Sham, 1989) can be defined. 
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Experimental Identification 
Technique of Vibrating 
Structures With Geometrical 
Nonlinearity 
A new experimental identification technique of a two-dimensional vibrating elastic 
structure with geometrical nonlinearity is eonsidered. First it is shown that the 
governing equations given in the form of nonlinear partial differential equations can 
always be transformed to those given in the form of nonlinear ordinary differential 
equations called the modal equations, and hence identification is reduced to determi- 
nation of the modal equations. Then a technique for determining the parameters of 
the modal equations through use of experimental data is proposed. Numerical simula- 
tion is conducted for typical cases, and applicability of the technique is confirmed. 

1 Introduction 
The identification of nonlinear vibrating systems through use 

of experimental data is of considerable importance in the applied 
mechanics area. Hence a number of papers have been published 
(Ibanez, 1973; Masri and Caughey, 1979; Udwadia and Kuo, 
1981; Kirshenboim and Ewins, 1984; Masri et al., 1984; Start- 
way et al., 1985; Yang and Ibrahim, 1985; Busby et al., 1986; 
Masri et al., 1987a, b; Yasuda et al., 1988a, b; Yasuda and 
Kawamura, 1989; Yasuda and Kamiya, 1991). However, all 
these papers concern discrete systems with a relatively few 
degrees-of-freedom. In addition, all these paper concern cases 
in which the nonlinearity is expressed directly in terms of the 
variables of the problem. Seemingly no papers have been pub- 
lished which concern distributed systems. In distributed sys- 
tems, cases in which the nonlinearity is not described directly 
by the variables of the problem are encountered. One such 
problem is the vibrating elastic structure with geometrical non- 
linearity, in which the nonlinearity is dependent on the global 
deformation of the system. So apparently the identification of 
the system requires different approaches from those used in the 
existing techniques. 

As a simple case of such problems, the authors considered 
in previous papers (Yasuda and Kamiya, 1990; Kamiya and 
Yasuda, 1993) a beam with geometrical nonlinearity, and pro- 
posed a technique for its identification. In the present paper, the 
authors consider a more general case, and propose a technique 
for identifying two-dimensional vibrating elastic structures. Nu- 
merical simulation is conducted for typical cases, and applica- 
bility of the proposed technique is confirmed. 

2 Formulation of the Problem 
Two-dimensional elastic structures such as membranes, 

plates and shells exhibit nonlinearity for large amplitudes, and 
are called systems with geometrical nonlinearity. These are the 
objects for which we are proposing an identification technique. 
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As a preparation, we consider the problem of analyzing re- 
sponses of elastic structures. An orthogonal curvilinear coordi- 
nate system O - xy is taken in the middle surface of a system 
in its equilibrium state. We denote the deflection and the stress 
function describing in-plane forces by w and F, respectively. 
Suppose that the system is subjected to external force q and 
viscous damping force with coefficient c. Then the equations 
of motion of Kfirmfin type for the system are given by 

02w Ow 
ph - ~ -  + c ~t  - N°•Zw + DX~74w = L(w, F) + VkZF + q 

1 V4 F = _ 1 L(w, w) - YEw (1) 
Eh 2 

where p, h, No, D, and E are the density, thickness, initial 
tension, flexural rigidity, and Young's modulus, respectively. 
The operators V 2, V~,, and L in Eqs. ( 1 ) are defined, for arbitrary 
functions f and g, as 

Vzf  = 0=l-f-f + 02----£f V~f = k, 02--f-f + k2 0 2 f  
Ox 2 Oy 2 ' Ox 2 Oy 2 

L(U, g) = Oz f  02g 2 0 z f  Ozg + 02~f 02g 
Ox 2 0 y  2 OxOy OxOy Oy 2 0 x  2 

(2) 

where kl and k2 are the curvatures in x and y-directions, respec- 
tively. For nonzero k~ and k2, Eqs. (1) express equations of 
motion of a shell. For kl = k2 = 0, they are reduced to those 
of a plate. Finally, for D = 0 and el = k2 = 0, they are reduced 
to those of a membrane. Our current problem is to solve Eqs. 
(1) under given boundary conditions. 

To solve this problem, we consider, in advance, the following 
two eigenvalue problems. The first is the problem of determin- 
ing eigenvalues and eigenfunctions of the linearized undamped 
system with the same boundary conditions as those of the origi- 
nal problem. The equations for this problem are 

- p h p 2 ~  - NoV2<I ) + D V 4 ~  = V~G 

I v " c  = - v ~ ,  (3) 
Eh 

wherep denotes the eigenvalue, and • and G the eigenfunctions. 
We denote the obtained eigenvalues and the corresponding ei- 
genfunctions by p = p,  (n = 1, 2 . . . .  ) and • = ~ , ,  G = G,,, 
respectively. Note that p,, and 4 ,  are the natural frequencies 
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and the modal functions of the linearized system. The second 
is the problem of determining the eigenvalues k and the eigen- 
functions H of equation 

1 
- - V 4 H  = k 4 n  (4) 
Eh 

with the same boundary conditions as those for F in the original 
problem. We denote the obtained eigenvalues and the corre- 
sponding eigenfunctions by k = k. (n = 1, 2 . . . .  ) and H = 
H., respectively. 

Now we return to solving the problem of analyzing responses. 
For this we expand the deflection w and the stress function F 
as 

w =  Z xo,I,. 
n = l  

F =  Z XnG. + Z Y.H~ 
n = l  n = l  

(5) 

where X. and Y,, are unknown functions of time, of which X~ 
are referred to as the modal coordinates. Since all qs, G., and 
H. satisfy the boundary conditions of the problem, w and F 
given by Eqs. (5) identically satisfy the same boundary condi- 
tions. Hence the remaining problem is to determine X. and I:. 
so that they satisfy Eqs. (1).  Substituting Eqs. (5) into the 
second of Eqs. ( 1 ) and noting Eqs. (3),  we obtain the conditions 
for w and F to satisfy the second of Eqs. ( 1 ) as follows: 

XmY,.H,. = -½L(  X,~,. ~ Xj%). (6) 
m=I i=1 j = l  

Multiplying Eq. (6) by H. and integrating the resulting equa- 
tions with respect to x and y over the region of the problem, 
yields, due to the orthogonality of the eigenfunctions H., the 
following equations: 

Y. = ~ a.,,jX~Xj ( n =  1,2 . . . .  ) (7) 
i , j = l  

where 

in which integration is conducted over the region of the prob- 
lem. Similarly, the condition for w and F to satisfy the first of 
Eqs. (1) is 

(phJ(~,,~,,, + CJ(m~,~ + php2mXm~,,,) 
m=l 

i = l  j = l  i 1 j = l  

+ Z YjV~Hj + q (9) 
j=l 

where a dot means differentiation with respect to time. Multi- 
plying Eq. (9) by ~ . ,  integrating over the region of the problem, 
and substituting Eqs. (7) into the resulting equation, yields 

m.X .  + c.X,, + k.X. + ~ a,,,uX, X i + ~ [3..o,X,X:X, = q. 
i , j  = i i , j , k  = I 

(n = 1 ,2  . . . .  ) (10) 

where 

m =ff.<dx+,  ,,=ffc< xdy 
f f  ff = php.~.dxdy,  q,, = q~.dxdy 

- f f  + i am,,:VZHm}+,,dxdy 
m = l 

ff P,,.0k = - ~  a,,jk L (~ i ,H , , )~ ,dxdy .  (11) 
m=l  

In the following, q,, in Eqs. (11) is referred to as the modal 
external force. 

Equations (10) are the ordinary differential equations ex- 
pressed in terms of the modal coordinates X,, and are called 
the modal equations. Note that the modal equations are coupled 
by nonlinear terms only, and that nonlinear terms are given by 
polynomials of the third order of the modal coordinates. If w 
and F are developed in terms of other functions than those used 
above, the resulting equations are more complicated. Determin- 
ing the modal coordinates X, by solving Eqs. (10) and substitut- 
ing them into the first of Eqs. (5),  yields the deflection w. In 
this way the problem of analyzing responses is reduced to solv- 
ing the modal equations. 

We are now ready to formulate the problem of identification. 
As shown above, the. governing Eqs. (1) can always be trans- 
formed to the modal Eqs. (10). Hence identification is reduced 
to the determination of the modal equations instead of Eqs. ( 1 ). 
Though the number of the modal equations is infinite, first few 
are significant in practical cases. So we may confine our prob- 
lem to determining these few significant equations, and thus 
identification is reduced to their determination. In the following, 
we propose a technique for determining these equations. 

3 Propos i t ion  of  an Ident i f icat ion T e c h n i q u e  

In identifying nonlinear systems, the task which presents most 
difficulty is the determination of the nonlinearity of the system. 
As compared with this, determination of the modal functions 
of the linearized system is relatively easy. They can be deter- 
mined, for example, by a usual finite element method or a 
conventional modal analysis technique for small amplitudes. 
Thus, in the following, we assume that the modal functions are 
available. Sometimes this may be a restriction, but not vital. 
Furthermore, this restriction will be overcome in a similar man- 
ner as was done in a beam (Kamiya and Yasuda, 1993). 

3.1 Determination of Modal Coordinates and Modal Ex- 
ternal Forces. Following the procedures required in our tech- 
nique, we first consider determination of modal coordinate X,, 
and modal force q, by use of the measured data of deflection 
w and external force q. 

Suppose that the deflection is measured at N points placed 
on the system. The measured values of deflection are denoted 
by w,, (m = 1, 2 . . . .  ). If we neglect, in the first expression of 
Eqs. (5),  terms with suffix n larger than N, we have 

W 2 1~21 0~)22 ' ' '  (I)2N X 2 ( 12) 

wN q'Nl ~,,2 "" ~,~_l 

where ~bm. (m, n = 1, 2 . . . . .  N) denotes the value of the nth 
modal function at the mth measuring point, and hence is a 
known quantity. Equation (12) is a simultaneous equation with 
respect to X,, (n = 1, 2 . . . . .  N). Unless the equation is singular, 
it can be solved. In this way, we can determine X.. Among all 
X,, thus obtained, some may be discarded, if they are very small. 
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Points where deflection is measured  
• Points where external  force is applied 

Fig. 1 Rectangular plate 

In the following, we suppose that the first M of the modal 
coordinates are significant. 

Determination of the modal external forces q, (n = 1,2 . . . . .  
M) is easy. They can be determined through the experimental 
data of q, by conducting integration given in the fourth expres- 
sion of Eqs. (11).  

3.2 Consideration of  the Form of Modal Equations. As 
shown in Section 2, the modal equations take the form of Eqs. 
(10).  However, for identification, a slight modification will be 
desirable. First, the damping terms in Eqs. (10) may take, in 
practical cases, more general form. Secondly, certain coeffi- 
cients of nonlinear terms such as a,.u and a,,u~ should be summed 
up as one coefficient. Thus, we put the modal equations in the 
form 

M M 

m,,X,, + Z c'.,,,.~,, + k.X,, + Z ee,,.uXiXj 
m I i , j - l ( i ~ j )  

M 

+ Z /~,,.u~X~XjX~ = q,, n = 1, 2 . . . . .  M) (13) 
i,j,k= 1 ( i~ j~k  ) 

where c,,,, (m, n = 1, 2 . . . . .  M) satisfy 

c,,,, = e ..... (14) 

Now that the form of the modal equations have been deter- 
mined, the remaining problem is to determine the unknown 
parameters m,,, c,,,,, k,,, a,.u, and/3,,u~ in Eqs. (13).  

2 . 0  

0.01 i i i i 

~ 0.01 i i ~ i 

2 .0  

1 . 0  

0 , 0  
30 50 70 90 110 130 

Frequency ~ Hz 

o Original  

- -  Identified 

Fig. 2 Amplitudes of the deflections of the rectangular plate 
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Fig. 3 Amplitudes of the modal coordinates of the rectangular plate 

3.3 Determination of  the Unknown Parameters. To de- 
termine the unknown parameters in Eqs. (13),  various tech- 
niques in time domain may be used (Masri et al., 1984, 1987a, 
b; Yan and Ibrahim, 1985). However, we apply here a different 
technique which one of the authors proposed for simpler sys- 
tems, and which may be classified as a technique in frequency 
domain (Yasuda et al., 1988a, b).  This technique allows averag- 
ing of the data and is expected to yield more accurate results. 
Furthermore, the technique requires only the data of displace- 
ment, but not those of velocity and acceleration, which is very 
convenient in many practical cases. 

We apply a s external force q, a periodic one with period T. 
We measure the applied force q and the deflection w of the 
periodic response. If no periodic responses occur, we adopt 
other external force by varying the period or the amplitude 
until the periodic response occurs. Using the measured data, we 
determine the modal coordinates X, and the modal external 
forces q,, following the procedures given above. Since X,, and 
q,, are periodic with the same period as that of q, they can be 
expanded into Fourier series 

q,, = (q,,)0 + (q,,)~ cos wt + (q,)z cos 2wt + . . .  

+ (q , )*  sin cot + (q,,)* sin 2wt + . . .  

X, = (X,,)0 + (X,,)] cos cot + (X,,)2 cos 2wt 

+ . . .  + (X,,)* sin wt + (X,,)* sin 2~t  + . . .  (15) 

where co = 27r/T. The Fourier coefficients (q,,)0, (q,,)~ . . . .  and 
(X,,)0, (X,,)~ . . .  in Eqs. (15) can be determined, for example, 
by an FFT algorithm, and are considered known quantities. 
Similarly, after having determined the terms X~Xj, XiXjXk (i,  
j ,  k = 1, 2 . . . . .  M) appearing in Eqs. (13) by operation of X,,, 
they can be expanded into Fourier series as follows: 

XiXj = (XiX;)o + (XiX;), cos cot + (XiXj)2 cos 2cot + . . .  

+ (X, Xj)* sin cot + (X~Xj)* sin 2wt + . . .  
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Table 1 

Exact Identified 
kg 

rn, 3.92 3.97 

,~/~ ~lO ~ ~Io ~ 
e ,t 1.20 1. 

c ~. 0:00 0:00 
~/m x l  ~10 ~ 

k, 4.410~ 4.48 

N / m  ~ ~ 10  ~ ~ 10 ~ 
a t . , ,  ,.0~ O. 0 

.... :8° 8: 8 ~ . ~ s  0 

° .... H o° ( h i .  I s  
o ~ .  t~  0 

('~ h ~3  

a~.s~ O. 0 

~ . 4 4  0 
ot~.4e 0 
o~ ~. ~ 0 

.... °:8° 8: a~..~ 0 0 O0 

Examples of identified parameters 

Exact 
~10 ' 

1.61 
0.00 

-1.25 
0.00 
8:88 
3.59 
8.OOO 
o:~o 

!ii 
0 "0~ 

0.0~ 
8:8 
0.00 
0 0 

ol 
0.00 
0.00 

Identifiedi 
xlO' 

1.63 

.01 

.17 
0.1 

H 
--0'. 1, 
7.2; 

-0.1, 
-1.8: 

olo; 

o2o'~ 
-0.4! 

8'0~ 
-0 2( 
0.3 
4.84 

N/m ~ 
t , 2 e 6  
| , 333  
1 ,334  
1 ,335  

3 3 6  
3 4 4  
a 4 5  
3 4 6  

a 6 B  

4 4 4  
4 4 ~  
4 4 6  
4 S 5  
4 5 e  
4 6 6  

Exact I Identified 

xlO ~ xlO" 
o.oo 
0.00 

-1.59 

o!! 2.65 
-7.93 -11.62 
0.00 1.40 

x i x j x k  = (x~x jXk)o  + (XiXjXk)~ cos ~t  

+ (XiXjXk)2  cos 2wt + . . .  + ( X i X j X k ) *  sin wt  

+ ( X i X j X k ) *  sin 2wt  + . . . .  (16) 

The Fourier coefficients (XiXj )o ,  (XiXj ) i  . . . .  are also consid- 
ered known quantities. After substituting Eqs. (15) and (16) 
in to  Eqs. ( 13 ), we  apply  to the  resu l t ing  equa t ions  the  pr inc ip le  
of  h a r m o n i c  ba lance ,  i.e., we  equate  the  cons t an t  t e rms  and  the  
coeff ic ients  o f  cos  wt, sin ~ot . . . .  o f  bo th  s ides up to an  appro-  
pr ia te  order.  T h e n  we  have  

[ A ] { S }  = { Q }  ( 1 7 )  

whe re  { S } is an u n k n o w n  vec to r  g iven  by  

{S}  = { m l . . . c l l  . . . k ,  . . . a l . , , . . . f l l . m . . . } r  ( 1 8 )  

and  [ A ]  and  { Q }  are k n o w n  matr ix  and  vector ,  respect ive ly ,  
d e t e r m i n e d  f r o m  the  Four ie r  coeff ic ients  of  Eqs.  ( 15 ) and  ( 16)•  
The expressions of [A] and { Q} are omitted here, because in 
concrete cases they can be given easily. 

Repeating the above procedures for various values of period 
T of the external force, we construct equations of the form of 

I 

• Points where deflection is measured 
• Points where external force is npplied 

Fig. 4 Circular plate 

Eq. (17) so that the number of equations exceeds that of the 
unknown parameters. Then the resulting equations are solved 
by the least square method. The result Is 

{S} = ( [ A ] r [ A ] ) - I [ A ] r { Q } .  (19) 

This completes the identification. 

4 Numerical  Simulat ion 
To examine applicability of the proposed technique, we con- 

duct numerical simulation. As examples of two-dimensional 
elastic structures, we consider plates. We obtain responses of 
the plates by numerical integration, and regard them as experi- 
mental data. 

4.1 Rectangular Plate. First, we consider a rectangular 
plate with its four edges simply supported. The modal functions 
~,,,, for this problem are given by 

'I~.,. sin mTrx . tory = - -  sin (20) 
a b 

0.0 : : : ?  

0.0 

10 30 50 70 90 
Frequency ~ Ez 

o Origin~ 

Identified 

Fig, 5 Amplitudesofthed~le~ionsofthecircularplate 
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where x and y-axes are taken along the two neighboring sides 
of the plate, where a and b are the lengths of the two sides, 
and where m and n are integers denoting the order of modes 
(Nowacki, 1963). These modal fnnctions are supposed to be 
available. 

The values of the parameters are taken as 

a = 0 .65m,  b = 0.35 m 

h = 0 . 5  × 10 -3m,  p = 7.84 × 103kg/m 3 

D = 2 .36Nm,  E =  2.06 × 10 ~ Pa 

c = 1.2 × 102 Ns /m 3, No = 4.0 × l0  3 N/m. (21) 

As the external force, we adopt a concentrated harmonic force 
of the form 

q = qo6 (x  - x / ) 6 ( y  - y f )  cos ~ t  (22) 

where q0 is the magnitude of the force, and (Xr, 3)) is the 
excitation point at which the force is applied. The value of q0 
is taken here as 13N. As excitation points, we select four points 
as shown in Fig. 1. As measuring points of deflection, we select 
12 points as shown also in Fig. 1. 

To make the data of  deflection w, we use the first ten equa- 
tions in Eqs. (10),  and solve them numerically. Then the ob- 
tained periodic solutions are substituted into the first of Eqs. 
(5) ,  and the values Wm (m = 1, 2 . . . . .  12) of the deflection at 
the measuring points are calculated. As examples of the data, 
the amplitudes at the measuring points 1 to 3 when the excitation 
point 1 is excited, are shown by (3 in Fig. 2. The modal coordi- 
nates X,, obtained from these data are shown in Fig. 3. 

From the values shown in Fig. 3 as well as those obtained 
when other points are excited, we see that the first six modal 
coordinates are significant. So we attempt to determine the first 
six equations of Eqs. (13).  

The number of the unknown parameters contained in these 
equations is vast. To decrease the number, we suppose that the 
nonlinear terms in Eqs. (13) are derivable from a potential. In 
addition, since the fifth and sixth modal coordinates are small 

as compared with the first four modal coordinates, we neglect, 
in the expression of the potential, terms which are given by 
products of the fifth and sixth modal coordinates with order 
higher than two. In applying the principle of harmonic balance, 
we retain terms up to the third order. 

In this way, the values of all the parameters are determined. 
As examples, the values of parameters which appear in the first 
modal equations are shown in Table 1. For comparison, the 
original values of the parameters are also shown in the table. 
It is seen that the identified and original parameters agree well 
with each other. To see whether all the identified parameters 
are appropriate, we use them to predict the amplitudes of the 
deflection at the measuring points. The results are shown by 
solid line in Fig. 2, in which the original data were shown by 
O. It can be seen from this figure, that the amplitudes obtained 
from the identified parameters agree well with the original ones. 

4.2 Ci rcu la r  Plate. As a second example, we consider a 
circular plate with its periphery clamped. The modal functions 

........ • ....... for this problem (Yasuda and Hayashi, 1982), ex- 
pressed in polar coordinate system O - rO, are 

~P ....... = { Jm(pj , ,r)  + K,,L,,(pl,,r) } cos mO 

i~ ....... = { J m ( p j ,  r)  + K,,L,,(pj,,r)} sin mO (23) 

where J,,, and/,,, are the Bessel function and the modified Bessel 
function, respectively, of order m, and p j,, and ph, are the con- 
stants determined in terms of the eigenvalue p of  the eigenvalue 
problem 

- p h p 2 ~  - N~)V2~ + DV4(I ) = 0. (24) 

The modal functions of Eqs. (23) are supposed to be available. 
The values of the parameters of the plate are taken as 

a = 0.65 m, h = 0.5 × l0  3m 

h = 0.5 × 10 -3m,  p = 7.84 × 103kg/m ~ 

D = 2.36 Nm, E = 2.06 × 10 11 Pa 

c = 1.2 × 102 Ns/m 3, No = 4.0 × 103 N/m. (25) 

As the external force q, we adopt concentrated harmonic force 
of the form 

q = qo6 ( r  - r r )6 (O - Ol) cos cot (26) 

where q0 is the magnitude of the force, and (rr, 0;) is the 
excitation point. The value of  qo is taken as 3N. As excitation 
points, we select four points as shown in Fig. 4. As measuring 
points of deflection, we select 13 points as shown also in 
Fig. 4. 

To obtain the data of deflection, we use the first ten equations 
in Eqs. (10).  The values w,, (m = 1, 2 . . . . .  13) of the deflection 
at the measuring points are obtained similarly as above. Exam- 
ples of the data are shown in Fig. 5. The modal coordinates X,, 
obtained from these data are shown in Fig. 6. 

From the values of modal coordinates, it is seen that the first 
six modal coordinates are significant. We attempt to determine 
the first six modal equations in a similar manner as above for 
the rectangular plate. 

The obtained results are used to predict the amplitudes of the 
deflection at the measuring points. They are shown by solid 
line in Fig. 5. It is seen from this figure, that the amplitudes 
obtained from the identified parameters agree well with the 
original ones shown by ©. 

5 C o n c l u s i o n  

An identification technique of a nonlinear two-dimensional 
vibrating elastic structure has been proposed. The technique 
enables one to determine the modal equations, with assuming 
that the modal functions of the linearized system are available. 
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A p p l i c a b i l i t y  o f  the  p r o p o s e d  t e c h n i q u e  ha s  b e e n  c o n f i r m e d  b y  

n u m e r i c a l  s i m u l a t i o n .  
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Unified Second-Order Stochastic 
Averaging Approach 
First-order stochastic averaging has proven very useful in predicting the response 
statistics and stability of  dynamic systems with nonlinear damping forces. However, 
the influence of  system stifJhess or inertia nonlinearities is lost during the averaging 
process. These nonlinearities can be recaptured only if one extends the stochastic 
averaging to second-order analysis. This paper presents a systematic and unified 
approach of  second-order stochastic averaging based on the Stratonovich-Khasmin- 
skii limit theorem. Response statistics, stochastic stability, phase transition (known 
as noise-induced transition), and stabilization by multiplicative noise are examined 
in one treatment. A MACSYMA symbolic manipulation subroutine has been developed 
to perform the averaging processes for  any type of  nonlinearity. The method is 
implemented to analyze the reaTgonse statistics of  a second-order oscillator with three 
different types of  nonlinearities, excited by both additive and multiplicative random 
processes. The second averaging results are in good agreement with those estimated 
by Monte Carlo simulation. For a special nonlinear oscillator, whose exact stationary 
solution is known, the second-order averaging results are identical to the exact 
solution up to first-order approximation. 

1 Introduction 
The stochastic averaging method, originally developed by 

Stratonovich (1963) and mathematically proved by Khasmin- 
skii (1966), has been widely used to predict the response statis- 
tics and stochastic stability of single-degree-of-freedom sys- 
tems. The essence of the method is to replace the response, 
which contains rapid oscillations due to system nonlinearities, 
by a smooth response described by slowly varying amplitudes 
and phase shifts. Usually, the amplitude envelope of the re- 
sponse is uncoupled from the corresponding phase process. 
When considering only the stationary response of a system, 
high-frequency oscillations have a localized effect (in time) 
and do not contribute significantly to the average behavior of 
the system over a long period of time. The limit theorems 
developed by Khasminskii (1963, 1966, 1968) provide certain 
conditions concerning the random excitation and system param- 
eters, such that if these conditions are satisfied, the response 
process converges to a diffusion Markov process. The imple- 
mentation of this method to nonlinear dynamical systems with 
small damping is well documented by Ibrahim (1985), Roberts 
and Spanos (1986), Roberts (1989), and Zhu (1991). Re- 
cently, Roy (1994) extended the concept of stochastic averaging 
to systems excited by an arbitrary colored Gaussian process 
generated from multidimensional linear filters subjected to 
white noise. 

Within the framework of first-order stochastic averaging, one 
can predict stochastic stability boundaries, the first-passage 
problem, and the response probability density function (pdf) of 
systems with damping nonlinearity. However, the effect of some 
other types of nonlinearities, such as cubic stiffness and special 
forms of nonlinear inertia, is lost during the averaging proce- 
dure. The effect of such nonlinearities can only be determined 
by performing second-order averaging. Second-order averaging 
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has not been widely used among dynamicists, apparently be- 
cause it requires tedious mathematical manipulations. To the 
authors' knowledge, Baxter (1971) and Schmidt (1981) em- 
ployed different forms of second-order averaging to parametri- 
cally excited systems with stiffness and inertia nonlinearities. 
For systems with nonlinear stiffness, alternative approaches 
have been proposed by Naprstek (1976), Iwan and Spanos 
(1978), and Roberts and Spanos (1986). These include a com- 
bination of equivalent linearization and first-order averaging 
(Naprstek, 1976 and |wan and Spanos, 1978) and the stochastic 
averaging of the energy envelope (Roberts and Spanos, 1986). 
Spanos and Red-Horse (1988) and Red-Horse and Spanos 
(1992) extended the concept of energy envelope to problems 
with stiffness nonlinearity subjected to nonstationary and sta- 
tionary excitations, respectively. In evaluating the diffusion pa- 
rameter of the Ito equation, Red-Horse and Spanos (1992) as- 
sumed that the period of averaging to be larger than the correla- 
tion time of the white noise excitation. 

The purpose of the present paper is to develop a unified 
second-order approach based on the same idea as in determinis- 
tic theory and the limit theorem of Khasminskii (1963). The 
method is systematic and is general for systems possessing 
stiffness, inertia, and damping nonlinearities. In addition to re- 
sponse statistics (pdf and response moments), the method gives 
conditions for phase transition and stochastic stability. A general 
MACSYMA symbolic algebraic subroutine is also developed 
to handle the algebraic manipulations of nonlinear single-de- 
gree-of-freedom systems subjected to external and/or paramet- 
ric excitations. This paper is divided into two main sections. The 
first outlines the analytical scheme of second-order stochastic 
averaging, while the second is the implementation of the method 
to a general nonlinear system subjected to parametric random 
excitations in damping and stiffness and to external random 
excitation as well. The results are compared to those obtained 
using Monte Carlo simulation. The validity of the method is 
also verified using a special nonlinear oscillator whose exact 
stationary solution is known. 

2 Analysis 
Consider the nonlinear second-order differential equation 

Y" + Y = g,(Y, Y', Y", ~ , ( r ) ,  ~=(r)  . . . . .  e) (1) 

where e is a small parameter, a prime denotes differentiation 
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with respect to the time parameter T, ~ (T), 42(T) . . . .  are any 
zero-mean stationary bounded random processes with suffi- 
ciently well-behaved mixing properties (Ibragimov 1959, 
1962). These properties require that the family of Sigma-alge- 
bra gl;l~ generated by the w-sets of the form {~'(7-) ~ ~(~-) }, 
T0 --< ~- --< T~, satisfy the two conditions: 

(i) IP(AB) - P(A)P(B)I  < R(T)P(A)  for any T ,A  
= 4~(~-) ~ ~R~, and B = 4)°(7-) ~ ~R~+r. 

(ii) T6R(T) ; 0 as T ~ w, where R(T)  is the autocorrela- 
tion function• 

The power 6 is introduced by Khasminskii (1966) based on 
the proof of his limit theorem• This power also indicates that 
the correlation matrix of the process 4(T) decreases very fast 
as the correlation time increases. 

The analysis is general for any number of random processes 
4~ (T), however, for convenience it will be restricted to three 
random processes• The function 9 includes stiffness, inertia, 
and damping nonlinearities, and linear damping. The random 
excitations ~ (T), 42 ( T ),  and 43 ( T ) can be additive or multipli- 
cative. The motion of this system can be described by an asymp- 
totic solution in terms of the behavior of its amplitude and phase 
angle. In such a system, the stationary response possesses an 
amplitude and phase which vary slowly about some "average" 
values 

Y(~-) = A(T)  COS ~o(r), Y ' 0 - )  = -A(~-)  sin ~(~-) (2) 

where ~p(r) = T + 0(~-) 
Transformation (2) can be differentiated to give the two first- 

order differential equations in amplitude and phase 

Y' y , ) ,  Y y . )  
A' (T)  = ~ (Y + O'(T) = -- ~5 (Y + . (3) 

Substituting (1) in (3) gives 

y/ 
A ' ( T )  = ~- ~O(Y, Y', Y", ~i(T), 42(z),  ~3(T), ~), 

Y 
0'(~-) = - ~ O(Y, Y', Y", ( i (T) ,  ~2(7), ~3(T), E) (4) 

A ~ 

The right-hand sides of Eqs. (4) are not explicit in A and 0. In 
this case Y and Y' can be replaced by using relations (2). 
Furthermore, the acceleration term Y" which appears on the 
right-hand sides of Eqs. (4) must be eliminated by successive 
elimination up to any order of accuracy. The resulting equations 
can be written in the standard form 

0'  I f2(A, 0, q-) 

[ gn(A,  0, T)g~2(A, O, 7)gL3(A, O, ~-)l 
-t-- ! / 

Ig21(A, O, ~-)g22(A, O, T)g23(A, 0, ~-) J 

l~(~)J 
(5) 

wherefi andfi  stand for drift terms, while the functions go are 
associated with diffusion terms• 

Inertia nonlinearities lead to higher-order terms in c(e 2, 
e ~  . . . .  ) which can also be included in the analysis. But for 
simplicity terms up to the order indicated in (5) will be retained. 
The nonlinear terms in f, andfi  will contain numerous products 
of sine and cosine functions with phase angle ~p(T). These 
terms may be expanded into a series of sine and cosine functions 
at the multiple phase angles n tp, n = 0, 1, 2, 3 . . . . .  The 
functions with higher-order multiple phase angle represent rapid 

oscillations or higher harmonics in the solution for the slowly 
varying amplitude and phase shift. When considering only the 
system stationary response, the high-frequency oscillations have 
a localized effect (in time) and do not contribute significantly 
to the average behavior of the system over a long period of 
time. We can therefore eliminate the oscillatory effects and 
simplify the equations of motion by introducing the near-iden- 
tity transformation 

A(T) = A~(T) + eU(/T, 0, T), 

0(T) = 0(~-) + ev(X, O, r)  (6) 

where A~(T), ~(T) = 0(T) + T, and 0(T) stand for nonoscilla- 
tory amplitude, phase angle, and phase shift, respectively. The 
functions u and v are expressed by the new series of functions 

N 
u(A, O, ~-) = ~, e"-'u,,(,g-, -0, r) ,  

n 1 

N 

v(AS, 0, -r) = ~ e"-'v,,(A, 0, T). (7) 
n=l 

These functions are chosen in such a manner that they absorb 
all oscillatory terms which do not contain the random processes 
~ (T), 42 (T), and ~3 ( T ). Representation (7)  indicates that the 
first term leads to second-order averaging• Second and higher- 
order terms give rise to higher-order approximations and will 
not be considered. The contribution of higher-order terms be- 
yond the first will only refine quantitative results and will not 
reveal new characteristics of the system. Terms containing exci- 
tation functions ~i(T), (2(T), and ~3(r) may also introduce 
oscillatory effects into the solution, however, their effect will 
be treated separately from the oscillatory effects of the nonexci- 
tation terms. Accordingly, consider only the deterministic part 
of the Eq. (5). Differentiating relations (6) and equating each 
result with the corresponding drift functions from Eq. (5) gives 

x, + c[°", ,  o" 0, + °"} 
L0A + 0--~ ~ = e f , ( A +  eu ,0  + ev, 7-) 

or00, or} 
° ' +  LoX + N  + 5 7  

= efz(X + cu, -O + ev, T). (8) 

Alternatively, these equations can be written in the matrix form 

l + e ~  e A '  

Ov 0 ~  O' 

E 

fl (X + eu, -0 + ev, T) _ 570u ] 

l Ov 
f2(.x_ + Eu, 0 + ~v, ~) 57 

(8a) 

Premultiplying both sides of (8a) by the inverse of the left 
square matrix and taking into account that 

~(X + eu, ~ + ~v, 7-) = jgX, ~, ~-) 

0~ 0 f Jv+H.O.T . ,  j =  1,2 (9) 
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where H.O.T. stands for Higher Order Terms, and 

OU 
l + e ~  

or 

O/b/ -1 

~ N  

or 
l + e ~  

OU 

OX 

or 
- ~  

results in the following equations 

where 

+ H.O.T. 
1 - e o r  

A '  = eX~ + e~X= + H.O.T., 

0 '  = eO 1 + e202 + H.O.T. 

OU 
£1  = fA - - -  

0 7 " '  

(10) 

(11) 

Ofa u Of, Ou Ou Ou Ou or Ou 
A= = -g-X + N o - -dx U' - - ~  U= + g ~ + o-V N 

01) 
O, =A - - -  

0~-' 

g)~ Of 2 OA or Ov OU or 
= ~ u + N ~ - ~ / .  - NU~ + ~ X + - - - -  

0 v &  

Or 00" 

(12) 

The functions u and v are determined in such a manner that 
- (Ou/07") and f2 - (or~Or) contain only nonoscillatory A 

terms. This can be achieved by solving the first-order differen- 
tial equations 

Ou or 
07- f, -- (f l)r ,  ~ = f :  - (A},. (13) 

This means that the average values are subtracted from 35, j = 
1, 2, to make sure that u and v are oscillatory functions. Upon 
integrating Eqs. (13) one obtains 

u(A, 0, 7) = {fa(A~, 0, e)  - ( f l ) , } d ~ -  

= Osc. Terms + z~(A, O) 

Io v(A, 0, 7") = {f~(PT, 0, ~) - (f ,)r}d~ 

= Osc. Terms + zz(A, O) (14) 

where z~ (A, 0) and z~ (A, 0) are constants of integration. Having 
obtained functions u and v, expressions for 272 and Oz of (12) 
become 

Of~ Of, v Ou Ou 

Of 2 Of~ Ov or 
O ~ = - ~ u + N v - ~ ( f ~ ) - N ( f ~ )  (15a) 

where relations (13) have been used. Applying the indicated 
transformation to the original Eq. (5),  the following stochastic 
differential equations in terms of the new variables A, 0 are 
obtained 

£ '  = eA,(A) + e=X2(X, 0, 7") + ~/7[g,,(X, 0, r ) { l ( r )  

+ g,=(ff, 0, 7")is(r) + g~3(ff, 0, r ) { 3 ( r ) ]  

+ e~[g l l (X ,  O, r )~ , ( r )  + gl2(A, O, r)~2(r)  

+ gl3(X, 0, T)~3(7-)] + H.O.T. (16a) 

0 '  = cOl(X) + e202(X, 0, r )  + ~/e[g2~(X, 0, r )~ j ( r )  

+ g22(A, O, 7-)~2(T) + gz3(A, O, 7")~3(~-)] 

+ e~e[g2,(£, 0, r ) ~ ( r )  + K=(A, O, r ) ~ ( r )  

+ ff~3(-g, 0, r ) ~ 3 ( r ) ]  + H.O.T. (16b) 

where 

Ou Ou OgH Ogl.__. 2 
El, = - g , ,  - ~ -  g2, - ~  + u ~ + v 00  ' 

Ou Ou Ogl2 Ogl2 
g'12= -g'~-O-X- g22-O-'O + u---O"~ + v 0--~- 

Ou Ou Og13 0g13 
g'13 = - g ' 3 - ~ -  g23"~ + u ' - ~  + v O--if' 

or or Og21 Og21 
g'21= - g "  - ~ -  g2''-~ + u - - ~  + v 0-'-'~- 

or o% Og= 0g2___2 
g.2~ = - g , 2  ~ - g22 - ~  + .  - ~ X  + ~ 00  ' 

Ov Ov 0g23 0g2.____2 
g23 = - g ' 3 - ~ -  g23-~ + u - ~  + v 00 

where use has been made for the expansion 

gij(A + ~u, 0 + ev) 

- - Og~ Og U = gij(A, O) + e - - ~ u  + e - - ~ v  + H.O.T. 

Assume that ~j(r)  are stationary random processes with zero 
means and with correlation matrix [Ro(r)]. If the coefficients 
of Eqs. (16) are sufficiently smooth, the processes ~j(r)  have 
sufficiently good mixing properties and its correlation matrix 
[Ru(r)]  sufficiently quickly decreases when r ~ w then there 
is a limit Markov diffusion process, as e ~ 0, which can be 
described by the well known Ito stochastic differential equations 

dx = a(x)dT- + o ' (x)dB (17) 

where x = {X0} T, and B(T)  = {Bl ( r )B2( r )}  r i s  a two- 
dimensional vector of independent Brownian motion processes. 
The elements of the drift vector a (x) and of the diffusion matrix 
b (x )  = ~(x)~r(x)  r are given by the following expressions 
according to Khasminskii limit theorem: 

a, (£)  = eAi(A) + e2~ X2(x, r ) d T  

+ e ~ ~ d~ (x, V) 
j = l  k=l l=1 

× &~(x, ~ + 7-)Rkl(Y) + e 2 d~ 
j = l  k=l t=l 

f × d r [  (x, ~ ) ~ ( x ,  Y + r )  
Ogl, 

-~ I_ Oxj 

+ Ogl, 7 
(x, ~)gj,(x, ~ + r ) | R ~ t ( r )  (18a) 

Oxj J 
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o21  a=(X) = e@t(X) + ~ O~(x, r ) d r  

fo 
j = l  k=l /=l - ~  

: i i ' f [  × gj~(x, Y + r)R~t(r) + e2j=~.= ~=t ~:~ ~ d~ 

× _~ dr  (x, y)g~(x,  ~ + r )  

q 
(x, ~)gjt(x, ~ + r ) | R ~ ( r )  (18b) 

J 

~ k l f o  bi~(X) = e ~ d~ 
k=l /=1 

X drgi~(x, 7)g~(x, r ) R ~ ( r  - ~) 

V + e 2 dY d r  [&~(x, e ) ~ ( x ,  r )  
k=l l=1 - ~  

+ ~ ( x ,  ~)&z(x, r)]R~z(r - ~). (19) 

Accordingly Eq. (17) can be written in the following form: 

= (at)+ [bti bt2]~/2(W~(~-)~ (20) 
a2 [_b2t b=J  \ W : ( r ) J  

V b l l  b 1 2 ]  1/2 
where [_bit b= = [~rij], Wj ( r )  = ( d B l ( r ) / d r ) a n d  Wz(r)  

= (dB2( r ) / d r )  are two equivalent independent white noise 
processes, each with unit intensity. Generally speaking, b12 = 
b2~ * 0. Note that the coordinate A forms a diffusion process 
described by the following Ito equation: 

A '  = a l (A)  + b~H(X)W(r )  

and the corresponding Fokker-Planck equation for the amplitude 
X is 

Op(%, r )  _ 0 
(a . (X)p(A,  r ) )  

Or ON 

1 02(bH(AT)p(AT, r ) )  
+ - (21) 

2 0,472 

with the normalization condition f ~ p ( X ,  r ) d A  = 1. The phase 
is uniformly distributed on the circle [0, 27r]. The relationship 
between p(A,  O) and p(A,  O) is obtained by using the well- 
known transformation p(A,  O) = p(A,  0)l[Jl[ where J = 10(A, 
O)/O(A, 0)l is the Jacobian given by the expression, using 
relations (6),  

Ou(A,O, r )  Ov(A,O, ~) 
J =  1 - e e + H.O.T. 

OA O0 

and p-(A, O) may be represented by the asymptotic expansion 

V(A,O)  = ~ (A ,O)  - eu(A,O, v ) - -  
OF(A, O) 

OA 

- ev(A, O, "r) - -  
On(A, O) 

O0 
+ H.O.T. 

Eventually p (A, 0) may be written in the form 

p ( A , O ) = ~ ( A , O ) - E [ O ( t ~ ( A , O ) u ( A , O , r ) )  

0 ] 
+ -~  (F(A, O)v(A, 0, r ) )  + H.O.T. 

The relationship between p (A) and p--(A) is obtained from (23) 
by averaging both sides with respect to 0. It takes the form 

0 
p(A)  = p ( A ) -  e - ~ [ t ~ ( a ) ( z l ( a , o ) ) ]  + H.O.T. (21a) 

where ( ) means averaging with respect to 0. This result is 
valid provided that p (A) is always positive. In other words, the 
expression e(O/OA)[p~(A)(zt(A, 0))] in relation (21a) should 
not exceed 1, otherwise additional higher-order terms should 
be included. 

The problem of noise-induced transition is examined by the 
qualitative change in the state of the system. This transition is 
not reflected in the moments of the stationary probability. The 
appropriate indicator of a transition are the extrema of the proba- 
bility density (Horsthemke and Lefever, 1989). The extrema 
of the stationary probability density of the system are deter- 
mined from the condition dp(A) /dA  = 0. This condition can 
be derived from the stationary Fokker-Planck equation of (21) 

1 d(bH(£))  
at(A-) O. (22) 

2 dX 

Having obtained p (A), one can estimate the moments of the 
response amplitude A 

E[A']  = [AT + eu(A, O)]'p(A, O)dAdO 
= -= ~O,A O 

y~ [A + ez~(AT)]'p(A)dA. (23) 

Note that the procedure can be reduced to first-order averaging 
if the functions u and v are set to zero. However, certain terms 
such as cubic stiffness and inertia will appear as oscillatory 
terms whose average values vanish. The role of the functions 
u and v is to bring the average values of these terms when treated 
as higher-order terms. This is the main rationale of second-order 
averaging. 

3 Application 

3.1 General Case. Consider the following stochastic non- 
linear oscillator: 

Y" + Y = e ( - ~ Y '  + a2Y 2 + c~3YY' + a4Y '2 

+ o~sY 3 + ol6Y2Y t + otyYY 12 + olsY r3) 

+ ,~eyt~,(r) + '/~cy2Y~a(r) + f~ey3Y'~(r ) .  (24) 

Note that the nonlinearities include the following types: (i) 
nonlinear damping given by the terms c~3Y Y ' + o~4Y ' 2 + otsY,  3 
+ o~6Y2Y ', (ii) nonlinear inertia given by the term o~7YY '2, 
and (iii) nonlinear stiffness given by the term asY 3. The above 
system is also excited externally and parametrically as indicated 
by the last three terms. The state equations for the system (24) 
can now be written in the form (5) where 

1 I f l ( a ,  ~o) = -g~aA + g(c~6 + 3o~8)A 3 + ½4 cos (2qo)a 

1 1 + [-a(c~2 + 3c~4) sin ~p + aa3 cos ~o 

1 1 + ~(o~4 - c~2) sin 3~o - g~3 cos 3~o]A 2 
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I 1 
-t- [ - -~ (0 /5  -t- Oe7) sin 2tp - ~0/8 cos 2tp 

| I + g(0/7 - 0/5) sin 4qo + g(0/8 - 0/6) cos &p]A 3 

f2(A, 99) = -~(30/s + 0/7)A ~ - ~ sin (2tp) 

1 I + [a0/3 sin ~ - a(3a2 + a4) cos ~p 

q- ¼(0/4 --  O12) COS 3~ + ¼0/3 sin 3tp]A 

1 1 + [-~0/~ cos 2tp + 5(0/6 + 0/8) sin 2~p 

+ ~(a7 - as)  cos 4~p + ½(a6 - 0/8) sin &p]A 2 

g~l = - y ~ s i n g ' ,  g~z = -y~Asin~pcos~p, 
g13 = T3 A sin2 tp 

g2~ = - c o s q o - ~ - ,  g2~ = - T 2 c  os~qo, 

g23 = T3 sin tp cos tp, So = 0 + r .  (25)  

Introducing transformations (2)  and (6)  and following the pro- 
cedure described in Section 2 to evaluate the functions u and 
v as defined by relations (14) the following expressions are 
obtained: 

u(A, fro) 1~ sin (2~)P7 + = [g(0 /2  "-k 30/4)  COS 

-'1- [ ~ (0/20/3 -}" Og30/4 -- ~0 /7)  

+ 1 
--'"7 (250/5 + 70/7)y~rrS2(2) 
40 

1 ] 
+ (15Ces + 170/7)y~$3(2) + ~ 0 / 7 " y ~ 7 1 5 3 ( 0 )  /~3 

+ 1 
7"7 (0/50/6 -t- 0/60/7 "+ 0/70/8 --  30 /50 /8 )A s 
23 

( -dz,'~ 
1 [TiffS2(2) + y~TrS3(2)] 3 z, - A ~ ]  

+ 8  

_ A2d2z~]  + 1 y~TrS~(0)(z,-A dz' - A~d2z"~ 
dX~_l a ' \ 7~ dX ~] 

+ ~(°e6 + 30/8)( 3Azzl - A3dz~'~d~] 

1 ( d~z,~ - ~ "r~r&(l) Z-2z, + X -~ dz, + 

- - (Z~ x d z t ~  
2 "~J J (27) 

1 1 
+ a0/3 sin ~ - ~2(0~4 - 0//2) COS (3~)  -- "i'~a3 sin (3~)]/72 

1 I + [g(0/s + 0/7) cos (2~)  - ac~ sin (2~)  

- ~ ( a 7  - 0/5) cos (4tp) + ~(0/8 - ~6) sin (4~)]A73 

+ z~(AT) (26a)  

v(AT, ~p) = ¼~ cos (2~p) + [-¼(30/2 + 0/4) sin ~p 

I 1 I 
- a0/.~ cos ~ + ]7(0/4 - 0/2) sin (3~)  - i~0/3 cos ( 3 ~ ) ] X  

1 I + [-g(0/6 + 0/8) cos (2cp) - a0/5 sin (2~)  

+ 5~(a7 - 0/5) sin (4~)  + ~2(a8 - 0/6) cos (4~)]A72 

+ z2(AT) (26b) 

~=O+r. 

Now substituting (26a,  b) in transformation (6)  and applying 
Khasminskii 's  limit theorem, the following expressions for the 
drift and diffusion coefficients al and bll are obtained: 

a,=~ - [ ~ + g ~ & ( 2 )  

3 1 71.y 2S3 (0)  ] / ~ + g ,~,~&(2) + 

1 (30/8 + 0/6)A a + ~ ~ r r & ( 1 ) a  < 

+ e2{~-6 (90/s + 70/7) yzrrs ,  ( 1)AT 

bH = e{ yZTrS,(1) + [~ yZ27rS2(2) 

Iy32r rS3(2)+  1 ] } + ~ ~ ~d,rS3(0) X 2 

2{1 + e ~ (3ot5 + 5av)y~rcSl(1)X2 

+ [3~(50/s+30/7)Y~vrS2(2)  

, ] 1 (30/5 + 5av)y~rrS3(2) + ~ 0 / 7 ' y { T r S 3 ( 0 )  za74 
+3-5 

1 [y~rrS2(2) + y~rcS3(2) + 2732rrS3(0)] +~ 

(28) 

Note that all terms of order e in the diffusion function bj~ are 
positive definite. Terms of order e 2 are guaranteed to be positive 
definite if the function z~ (AT) is selected in such a way that the 
A74-term (which is of order e 2) in the diffusion term &l vanishes. 
This can be achieved if z~ is a cubic function in X as inferred 
from the expression (zlA - (dzddX)X2), i.e., 

z~ (Z) = /~7  ~ 

where 

(5as + 3aT)y~Sz(2) + (3as + 5aT)y~S3(2) + 8aTy~S3(0) 
/3 = 32[y~$2(2) + y~$3(2) + 2y~&(0)] 

(29)  
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Now expressions for the drift and diffusion coefficients become 

1 
a~ = C,A + C3 X3 q- C5 X5 -J- C 0 ~  , 

b,~ = 2C0 + D2A 2 (30) 

where 

1 2 Col = ~j~TrSi(1), 

Co=eCru ,  Ci = eCi~ + e2C~2, C3 = eC3~ + ~C32, 

C5 = £2C52, D2 = eD2~ + e2D22, 

3 2 1 2 c1, = - ½; + ~-~4~s2(2) + ~ , , ~ - s , ( 2 )  + a v , ~ - & ( o ) ,  

C,2 = [~6(9as + 7av) - 5 / 3 1 " y ~ 7 1 S 1 ( 1 )  

1 
C3! = gg(0/6 + 3a8), 

1 C32 = g(220/3 + 0/3a4 - ~0/7) + ~/3 

+ [~4(25a5 + 7a7) 3 2 - ~/3] y 2 r c & ( 2 )  

+ [~4(150/5 + 17a7) 
- ~/31 ~,~-&(2) 

1 
+ (~0/7 -- 2/3)T~71"S3(0) 

C52 = ~2(Og50L6 -+" a6a7 + OtTa8 -- 3asa8) 

I 2 2 I 2 2 1 2  D2~ = a72~$2( ) + aT3~'S3( ) + ~T3r~S3(0), 

D22 = [-~(3oe5 + 50/7) - 6/3]y~Tr&(1) (31) 

where/3 should be replaced by the right-hand side of (29), and 

&(w) = ~ cos ( w r ) R i i ( r ) d r  i = 1, 2. 

It is assumed that R U = 0 (i #: j ) .  The drift and diffusion 
coefficients given by (30) establish some diffusion process 
A(r )  described by the following Ito stochastic differential equa- 
tion: 

X '  = a , (A )  + ~ / ~ 7 ~ W ( r )  (32) 

where W ( r )  is a white noise of unit intensity. The correspond- 
ing pdf satisfies the Fokker-Planck Eq. (21) which possesses 
the stationary solution 

p(A) = KA(2Co + D2X 2) - 3- + cl 2C°C------2 + 4C°zC------~ 
2 02 0~ 0~ 

xexP[2D2CSx4+ ( C3.2~2Cs)X2]~ D2 / J (33) 

provided that (25 < 0 or 

0/50/6 -1- 0/60/7 + 0/70/8 -- 30/50/8 < 0. 

If C5 = 0 then C3 should be negative for the existence of 
stationary pdf. It is convenient to write the pdf (33) in terms 
of the small parameter e using relations (31 ) in the form 

if(A) = KA[2Cm + (D21 + eD22)A -2] - 3 + C11 + eC12 
2 Dzl + eD22 

2Co1(C31 + 6C32) 4C~,Cs2 
(O21 + eD=) 2 + e (D21 + £D22)3 

[ ~ "~ eC32 2CmC52 IX2 
x exp ( LD2, + ~022 c (D2q 7 ,D--~2)2J 

C52 X 4 } (33a) 
+ e 2(D21 + eD=) 

where the normalization coefficient K depends on e. As e ~ 0 
(33a) has the following limit: 

fro(A) = KoA(2Cm + D2,A 2) 

3 -~- Cl, 2ColC31 ( C31 /~2~ 
2 D21 D ]-----7-- exp (33b) \D31 ] 

provided D2~ e 0, Cot :e 0, and either C3~ < 0, or C3~ = 0 and 
2CH < D21. The condition 2C~1 < D21 can be written in the 
form 

rr3,~$2(2) + 7r'y~S3(2) < 2~. (34) 

The case of external excitation only (D2~ = 0) will be consid- 
ered in Section 3.4. It is interesting to note that the expression of 
the Pdf (33b) corresponds the first-order averaging technique, if 
the pdf (33b) exists, the function fr(A) given by (33a) can be 
represented in the asymptotic expansion form 

fr(A) = fro(A) + efrl(A) + H.O.T. (35) 

where 

f ,  ix) = ( C,2 
\D21 

ffl (X) = fro(A) (f l  (A) - Kl) 

C11D22 + 2Co1C32 
D2~ 

+ 4Co1(C31D22 + CmC52)~ In (2Co1 + D21X2) 
D231 / 

3 
+ 2 + 

Cll 2Cm C3j '~ D22A 2 
D21 D21 ] 2C0 + D21 x2 

C52 X 4 + 
2D21 D~i 

C32D21 - C31D22 - 2CMD52/~2 

I~ 1 = Ko f ;  f ro (x ) f l (X )dx ,  (36) 

The constant K1 guarantees that the average of ffl(,g) is equal 
to zero. Finally the pdf of the amplitude A can be obtained 
using relation (21a) in the form 

p ( A )  = po(A) + opt(A) + H.O.T., 

p , (A  ) = po(A ) (A (A ) - Ki) ,  po(A ) -~ fro(A) 

0 
fi (A ) = ag~ (A ) - ~ (z, (A )po(A ) ) 

{C12 Cll022 + 2CMC32 
I 
\ D21 D~i 

4Co1(C31D22 + Co1C52)~ In (2Col + D21A 2) 
+ O~l / 

3 Cll 2ColC31 ~ 
+ - 2 + D21 0~1 ,] 
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Fig. 1 Dependence of the response mean amplitude E[A] on external 
excitation level according to first-order averaging - - - ,  and second-order 
averaging - - . .  For parametric excitation levels ~'y~Sa(2)/t~ = 
~.y~Sa(O)/t~ : ~ry~S~(2)/l~ = 2. 

D22 - 2flD21A 2 . 2 C52 - -  4flC31 A4 - - -  - -~-- - -~  A + 
2Coj + D21A 2D21 

+ ( C32D21- C3'D22 - 2C°'Dsz - ' 
(37) 

The term p~(A) is due to the second-order averaging and is 
accounted for the effects of nonlinearities lost during first-order 
averaging. For the case when po(A) exists (i.e., when the limit 
of (33) exists as e ~ 0), the moments of the amplitude A as a 
function of the moments of the amplitude X can be derived 
from (26) as follows: 

E[A"] = f :  (F," + enflA "+2 + H.O.T . )p (A)dA 

= E[,4"] + ¢flnE[X. "+2] + H.O.T. (38) 

Figure 1 shows the dependence of the mean value of the re- 
sponse amplitude on the external excitation level 7ry~S~ (1) /~  
for • = 0.01, 4 = 1, c~2 = 4, c~3 = - 4 ,  c~4 = - 3 ,  c~5 = - 9 ,  o~6 
= 2, ce7 = - 3 ,  tea = - 1 ,  y~ = 3, Y2 = 1, and Y3 = 1. It is 
seen that at zero external excitation level the response begins 
at certain value which corresponds the response under com- 
bined parametric excitations 7r y ~ $3 ( 2 ) / 4 = 7r y 2 S3 ( 0 ) / 4 = 
7ry~$2(2)/4 = 2.0. The results obtained by first and second- 
order averaging are shown for comparison and both are mono- 
tonically increase with the excitation level. It is clear that the 
first-order averaging gives higher estimate than the second-order 
averaging solution. 

In order to gain more physical insight to the results of this 
analysis, it is convenient to consider the following special cases. 

3 . 2  P a r a m e t r i c a l l y  E x c i t e d  S y s t e m  in  t h e  S t i f f n e s s  

('Y~ = Ya = 0, and  1/2 ~ 0).  For simplicity consider only 
stiffness and inertia nonlinearities, i.e., c~2 = c~3 = a4 = c~6 = 
as = 0. In this case fl = (5c~s + 3c~7)/32 and 

C 0 = 0,  C 1 = C C l l  , C 3 = •2C32 , 

C5 = 0, D2 = •D21 

3 2 Cii = -½4 + ~y27rS2(2), 

C32 = .~2(50~5 - 0 / 7 ) [ 4  Jr- yzTrs2(2)], 

I 2 
D21 = ~'y27rS2(2).  (39) 

Consequently, the averaged Eq. (32) takes the form 

A t  = C i A  q- C 3 / ~  3 .-~ X~2W(T),  (40) 

The corresponding linear system is stable (in probability) if 
y27rS2(2)/4 < 2. A stationary pdf exists only if the following 
conditions are satisfied: 

Cl > 1 y~wS2(2) 
- -  - or  - -  > 2 (40a)  
D2 2 4 

and 

C3 < 0, or 5 a s - a T  < 0 (40b) 

and is given by the formula which follows from (33),  

p ( A ) =  KNX2((C'/Dz)-I) exp(--~22 A 2 )  , 

C3 (C1/D2)-(112) C 1 
KN = 2 ( -  ~-~2) / F ( ~ 2  - 1 ) . (41) 

The corresponding mean, mean square values and nth moment 
of the amplitude are 

E[A] = 

r(c,) 
\ Da/  

\ D2 D2 

E [X  2] = 
r( C, 

r(C, + .  - 1) 
\D2  2 

E[X.n] = F ( C i  C3, ,/2 (42) 

and 

E[A"] = E[A"]  + en 50~5 + 30~7 E [ A  "+2] + H.O.T. (42a)  
32 

Note that the exponent 2 (C~/D2 - 1 ) in the expression (41 ) is 
of order 1 (with respect to c) while C3/D2 is of order c. In this 
case it is possible to show that E[A"] and E[X"] are of order 
• -,/2. The pdf given by (33a) can be represented in terms of 
• in the form 

C32 ~(cil/D2t)-(I/2) / F (  Cii 
K'  = 2 ( - ~ /  / \~21  - 21-) . (43) 

As it is seen from (43) that there is no limit of if(A) as • ~ 0. 
The function /T(X) becomes infinite as c ~ 0. So in this 
case there is no regular expansion of the form/Y0(A) + c/7~ (A) 

In terms of the original amplitude A the corresponding pdf 
is 
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Fig. 2 Dependence of the response amplitude mean value E [ A ]  . . . .  , 

and mean square E [ A  2] - -  on parametric excitation level (in stiff- 
ness) according to second-order averaging. • • • Monte Carlo simulation 
E [ A  = ] 

sity function. A transition to other peaks takes place due to the 
multiplicative noise. The other two roots depend on whether 
the stiffness nonlinearity is soft a5 > 0, or hard a5 < 0. A 
bifurcation diagram showing the dependence of the extrema on 
the excitation level is shown in Fig. 3. It is seen that 
7ry~$2(2)/~ = 4 separates between the extrema of soft and 
hard stiffness nonlinearities. Figure 3 reveals the stabilization 
effect of the multiplicative noise on the originally unstable sys- 
tem with soft stiffness nonlinearity ce5 > 0. It is seen that as 
the parametric excitation increases the extrema defined by P~2.3 
decreases until it vanishes. This is only valid for systems with 
soft nonlinear stiffness. 

3.3 Parametr ical ly  Excited System in the Damping 
(y~ = ~2 = 0, and Y3 ~ 0).  Considering only stiffness and 
inertia nonlinearities, the following parameters are obtained: 

(3a5 + 5ol7)$3(2) "+" 8o~7S3(0) /3= 
32[$3(2) + 2S3(0)] 

3 2  2 I z 0 Co = 0, C1 = ~{ -½4 + ~3,37rS3( ) + ~/37rS3( )} 

C3 = ~2((30z5 +o~7)$3(2)[~ + 7rye(S3(2)+ 3S3(0))] } 
32[$3(2) + 2S3(0))] 

0 p(A) = if(A) - e ~ [/31Y(A)A 3] + H.O.T. 

( 1 ( _____~____._ ~ A 2 
=/~(A) 1 - ~ e(5a5 + 3o~7) 1 3,zTrS2(2 ) ] 

1 
- - -  e2(5a5 + 3av)(5a5 - a7) 

128 

X (1  + ~-- - - - -~-- - )a4]  +H.O.T.  
~,]~r&(2) 

(43a) 

Figure 2 shows the dependence of the mean and mean square 
of the response amplitude on the excitation level 7r'y~S2(2)/~ 
for e = 0.01, ~ = 1, c~5 = - 9 ,  a7 = - 3 ,  and y2 = 1. It is seen 
that nonzero response emanates from an excitation level 
7r'y~S2(2)/~ = 2 which coincides with condition (40a). 

The validity of the second-order averaging results has been 
verified using Monte Carlo simulation. The mean square ampli- 
tude as estimated by Monte Carlo simulation is plotted by solid 
dots in Fig. 2. It is seen that the second-order averaging is in 
good agreement with the numerical simulation. Note that at the 
bifurcation point 7ryz2Sz(2)/~ = 2 the response exhibits on-off 
intermittency. This type of intennittency takes place over an 
excitation level defined over the region 2 --< 7ry~$2(2)/~ ~- 4 
which can be inferred from the analytical solution (39) (see 
Hijawi et al. (1997) for more details and other applications). 

The transition of the extrema of the response probability 
density function can be determined from condition (22) or by 
setting the derivative of Eq. (39) with respect to the response 
amplitude to zero. This condition gives 

C3 x 3  - ~z[(D 2 -- C 1 )  = 0 .  (44) 

This equation has three solutions given by the roots 

Ai = 0, X2.3 = ± ~/~3D2 - C~ (44a) 

In terms of system and excitation parameters and considering 
only nonlinear stiffness, these roots are 

X , = 0 ,  X23= ~ . o 4 ~ - T r y Z 2 S 2 ( 2 )  . (44b) 
' + ~ + ~-y~s2(2) l  

The zero root defines one peak in the response probability den- 

c5 = o, 02 = d¼,y~r [ s3(2)  + 2 s 3 ( 0 ) 1 } .  (45)  

The averaged equation has the same form of Eq. (40). The 
corresponding linear system is stable (in probability) if 

7ry~$3(2_..............__) < 2. (46) 

The response stationary pdf exists under the two conditions: 
C1/D2 > 72 and C3 < 0, or in terms of system and excitation 
parameters 

7ry~$3(2__.........___) > 2 and 3a5 + a7 < 0. (47) 

If these conditions hold then the pdf exists and has the form 
(41) and the corresponding mean and mean square are given 
by (42) but with those coefficients defined by (45). Figure 4 
shows the dependence of mean and mean square of the response 
amplitude on the excitation level 71-'y~$3(2)/~ or 7r'y~S3(0)/~ 
for e = 0.01, ~ = 1, a5 = - 9 ,  c~7 = - 3 ,  and Y3 = 1. Again it 
is seen that stochastic bifurcation in moments takes place at 
7r,y32S3(2)/~ = 2 which coincides with the stability boundary 
indicted by the first condition of (47). 

2.5 

20t 
1,5 

Ix, ff-s 

1,0 

0.5 

0.0 

0.0 1,0 2.0 3.0 4.0 5.0 6,0 7.0 8.0 

Fig. 3 Dependence of the amplitude of extrema on parametric excitation 
level for soft and hard stiffness nonlinearities 
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Fig. 4 Dependence of the response amplitude mean value E[A]  . . . .  , 
and mean square E[A ~] on parametric excitation level (in damp- 
ing) ~ y ] S a ( 2 ) / ~  or ~ry]Sa(O)/t~ according to second order averaging 

Remark: If the system is subjected to both parametric exci- 
tations in stiffness and damping, then the dependence of the 
response on the excitation level will be different depending on 
the excitation level of each. In this case (y~ = 0, y2 :~ 0, Y3 
0) the parameter/3 is given by (29),  Co = C5 = 0 and coeffi- 
cients C~, C3, D2 are determined by (31).  The differential equa- 
tion for the A takes the form (40) and the analysis is similar 
to Section 3.2. For example Fig. 5 shows the dependence of 
the mean and mean square of the response amplitude on 
7ry~&(2) /~  for 7r'y~S3(2)/~ = 71T32S3(0)/~ = 2.0. In this case 
the bifurcation takes place at a lower level of 7ry~&(2) /~ .  

3.4 Externally Excited System (Y2 = 3/3 = 0). If the 
system is subjected to additive noise, i.e., Y2 = Y3 = 0, there 
is no ,~4-term in the diffusion term b ,  and the function z~(A-) 
is selected in such a way that the A2-term in the diffusion term 
bl~ vanishes. That can be achieved by choosing z! as a cubic 
function in A with the following coefficient/3: 

3a5 + 5a7 
fl - (48) 

48 
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F ig .  5 Dependence of the response amplitude mean v a l u e  E [ A ]  . . . .  , 
and mean s q u a r e  E [ A  2] - -  on the parametric excitation level (in 
stiffness) ~r'y~S=(2)/~ according to second-order averaging for 
~ y ~ S s ( 2 ) / ~  = ~ 'y~Sa(O)/~ = 2 . 0  

6 

5 • °  

o • 4/y.__ 
3 

E[A] . 
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F ig .  6 Dependence of the response amplitude mean E[A]  on the 
external excitation level i ry~S~ ( 1 ) / i ~  according to first-order averaging 
. . . .  and second-order averaging . In  the absence of parametric 
excitations. • * * Monte Carlo simulation E [ A ] .  

Expressions for the drift and diffusion coefficients are 

1 
a~ = C , X  + C~X 3 + CsX 5 + C0-v-, blj = 2Co (49) 

A 

where expressions for Co and C5 remain the same as in (31) 
while Ci and C3 are given by the expressions 

C, = e{-½~} + e2{~(3ce5 - aT)y~Tr&(1)} 

1 
C3 = e{g(a6 + 3a8)} 

2 1 
"Jr E { g a 3 ( a  2 -[- 0~4) - -  4 ~ ( ~ a 7  - -  3~0~.5) } . ( 5 0 )  

The corresponding stationary pdf is 

p(,~)  = KNA exp A 2 + 4C0 + 6C---~ 

= K A e x p (  C112Cm + e C 1 2 x 2 +  C3~4Cm + eC32~4 

C~? X6) (51) 
+ e 6Cm 

provided that C5 < 0. If C5 = 0 then the corresponding condition 
for existence of stationary probability density is C3 < 0. Figure 
(6) shows the dependence of the response mean value on the 
excitation level 7ry~St ( 1 )/~ according to first and second-order 
averaging solutions for e = 0.01, ~ = 1, a2 = 4, a3 = - 4 ,  an 
= - 3 ,  a5 = - 9 ,  a6 = 2, a7 = - 3 ,  a8 = - l ,  and y~ = 1. 
The results of the second-order averaging are in an excellent 
agreement with those estimated by Monte Carlo simulation, 
indicated by solid points. 

For simplicity again assume that a2 = a3 = a4 = a6 = a8 = 
0. Then the following coefficients are obtained: 

1 2 Co = ~ey 17rS1 ( 1 ), 

1 ~c2(a7 1), Ci = -~e~ - - 3 a s ) y ~ S l (  

C3 = -~e2~(av  - 3a5), C5 = 0 (52) 
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I f  Ol 7 > 3C~5 then stationary pdf exists and has the form 

p ( A ) =  K u X e x P ( 2 @  ° A72+ 4coC3 Asa) 

= KNAexp 2y~TrSl(1) - ~ e(c~7 - 3c~5) 

y ~ S l ( 1 )  

where the normalization constant KN is given by 

K ~  = 

c3 

4C0 

The corresponding mean square value is 

E[X2] _ Ct 
C3 

(53) 

1 + 

exp [ - - ~ - ~  eft C1 

The leading term of the expression (53) corresponds to the 
Rayleigh distribution. Therefore it is not difficult to obtain 
the leading and e-term for the expectation of the amplitude X 
and A 

5 7ry~Sl(l___________) (c~7 - 3c~5) ] 
32  J 

E[A] = 7ryl ~ 2 ~  [1 + e - -  

+ H.O.T. 

7ry2S1 ( 1 ) ~  21c~532 + 5~7] 

(54a) 

+ H.O.T. (54b) 

Note that these expressions are less accurate than those gener- 
ated from Eq. (51). The asymptotic expansion o fp (A)  for this 
case has the form 

I0/7 -- 3c~5 a7 A2 p(A) = ~Ae -6Az/2 1 + e ~ 2 

3(o~5 + a 7 ) 6 A 4 ] }  +H.O.T.  ' 
+ 32 

; (55) 
,/~TrS~ ( 1 ) " 

The validity of the pdf obtained by the proposed second-order 
stochastic averaging will be examined by comparing the results 
with those obtained with the exact solution of a special nonlinear 
oscillator. This will examined in the next subsection. 

3.5 Comparison  With  an Exact  Solution.  It is useful to 
compare the approximate solution of the pdf given by the sec- 
ond-order averaging with the exact pdf of a special nonlinear 
oscillator whose exact solution is known. We will show that 
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the difference between the two solutions is of order c 2 Consider 
the following stochastic system: 

Y"+ Y = - ~ Y ' + 0 / s Y  3+0/6Y2Y ' + % W I  +~'2YW; (56) 

where if, 0/5, 0/6, %,  % are some constants and W ~, W ; are 
independent white noises of unit intensities. If 0/5 < 0, 0/6 < 0 
and (~,~/~) = ( ~ / - 0 / 6 )  = 2D > 0 then the corresponding 
exact solution of the stationary Fokker-Planck-Kolmogorov 
equation has the form 

where K is the normalization constant, (y,2 + y2)/2 + o!5y4] 
4 is the Hamiltonian of the system. In terms of amplitude A 
and angle ~o expression (57) becomes 

1 p(A, q o ) = K ' A e x p [ - ~ ( A 2 - ~ a 5 A 4 c o s 4 t p ) ] .  (58) 

The pdf of the amplitude A alone is 

( -'~-- A 2~ p(A) = K'A exp - 2D / 

Ill; (+ )]  × ~ exp 0/5A 4 COS 4 ~0 dqo . (59) 

This expression is valid for any values of the constants D and 
0/5. In order to compare this result with the second-order averag- 
ing, the coefficients of Eqs. (24) and (56) have the following 
correspondence: 

where e is a small parameter and (y~/~) = ( y ~ / - a 6 )  = 2D 
is of order 1. In this case the pdf given by (59) can be in the 
form 

p(A.) = K'A exp - 

× exp e ~ o!5A 4 COS 4 q0 dqo . (60) 

The main goal is to show that the exact solution (60) will yield 
the same leading and next term of the asymptotic expansion for 
pdf in terms of e similar to the second-order averaging expres- 
sion (33). In other words the difference between (60) and (33) 
is some function of order e 2. Expanding (61) in power series 
of e gives 

A2 ~DA4(cos4 ~ ) )  + O(e2) 

= K'A e x p ( - ~ D  ) ( i + e 3 ; ;  A4) + O(e2). (61) 

Evaluating the normalization constant K'  up to the order e and 
substituting it in (61), we obtain A(A2) p(A ) --- ~ exp - 

3c~5D 3ce5 A4 ) 
× 1 - e T  + e 3 2 D  / + O(e2)'  (62) 
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Rewriting this result in the series form 

p(A) = po(A) + epl(A) + O(e2), 

A (  A~ ) 
po(A) = ~ e x p  - ~  , 

3 3a5 A4 ) . 
pi(A) = po(A) - ~ a~D + 32D 

Comparing this formula with (37). In our case 

Co,=-~ - ,  C ~ , = - ~  16 ' 6------4--' 

Ol6 6~ 0/50/6 c ~ = y ,  c~2= o~(2;+~,~),  c ~ -  32 ' 

y~ 9asy~ 
D2~ = - - ~ ,  D22 = 32 

These expressions reduce the coefficients listed for expression 
(37) to the following values: 

C12 CitD22 + 2Co1C32 4Co1(C31Dz2 + Co1C52) 
+ = 0 ,  

D2t D~, D~l 

C32D21 - C3~D22 - 2CoiCsz 
D~ - 4[3 = 0 

-- 3 @ Cll 2C°1C3--------~ - 0, C52 - 4/3C3~ _ 3o~5~ 
2 D2t D~l 2D21 16y~ ' 

1 3 Ko=~, K,=-~D. 
It is obvious that expressions (62) and (37) are now identical. 

4 General  R e m a r k s  and Conclus ions  
A second-order stochastic averaging scheme is developed 

that is capable of capturing the effects of stiffness and inertia 
Imnlinearities which are usually lost in the first-order averaging 
process. Stochastic stability boundaries, response probability 
density functions and extrema for phase transition are obtained 
in closed-form expressions. Stabilization of unstable systems 
by multiplicative noise is also defined for systems with soft 
stiffness nonlinearity. The analytical procedure can be signifi- 
cantly facilitated by using a symbolic algebraic manipulation 
package, such as MACSYMA. The method has proven very 
powerful for general nonlinear oscillators with additive and 
multiplicative random excitations. The method should be ex- 
tended to multi-degree-of-freedom systems with internal reso- 
nance conditions. This task is underway by the authors. 

The method outlined in this paper is different from the one 
developed by Baxter ( 1971 ). Note that Baxter ( 1971 ) evaluated 
the constants of integration z~ (A) in such a manner that the 
amplitude X is the full amplitude of the response at the funda- 
mental harmonic cos 0. This can be achieved by substituting 
the oscillatory functions u and v into Eqs. (6) and (2) such that 
the coordinate Y(T) will have no terms of order e or higher 
that contain the fundamental harmonic, i.e., 

Y(7-) = A cos ~p = (A + cu) cos (~ + co) 

= Acos  p + e(u cos ~ - vAsin  ~p) + . . . .  (63) 

Upon substituting for u and v from relations (14) and collecting 
terms of order c with cos qo and sin tp, one obtains z~ and zz by 

setting the coefficients of cos ~ and sin ~ to zero. This step is 
analogous to the solvability condition encountered in determin- 
istic perturbation techniques for solving nonlinear differential 
equations. This procedure yields 

Zl = -- - -  
1 

/~3(0t7 -{- 3ce5), 
16 

1 1 
# I O  

(56) 

Final expressions for the drift and diffusion coefficients of the 
averaged stochastic equation for the amplitude follow from (27) 
and (28) after substituting for zi (A) into expressions (26a) and 
(26b). In this case the drift coefficient al can be represented in 
the form (27), but bit will have fourth-order term in P~, i.e., 
D4A 4 and the constant D4 is not necessary positive. Therefore 
in (Baxter, 1971) higher-order terms CsA 5 and O4~x 4 w e r e  
dropped. 
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Dynamic Substructuring of 
Damped Structures Using 
Singular Value Decomposition 
This paper deals with the theoretical aspects" concerning linear elastodynamic of  
damped continuum medium in the frequency domain. Eigenvalue analysis and fre- 
quency response function are studied. The methods discussed here use a dynamic 
substructuring approach. The first method is based on a mixed variational formulation 
in which Lagrange multipliers are introduced to impose the linear constraints on the 
coupling interfaces. A modal reduction of  each substructure is obtained using its 
free-interface modes. A practical construction of a unique solution is carried out using 
the Singular Value Decomposition ( SVD ) related only to the frequency-independent 
Lagrange multiplier terms. The second method is similar to the first one replacing 
the free-interface modes by the fixed-interface modes and elastostatic operator on 
the interface of  each substructure. 

1 Introduction 

In this paper, we are interested in eigenvalue and frequency 
response function calculations of a linear dynamic three-dimen- 
sional bounded damped elastic structure subjected to prescribed 
forces. Recall that the frequency response functions allow deter- 
ministic and stationary random analyses to be performed (Kree 
and Soize, 1986; Argyris and Meljnek, 1991). More precisely, 
this paper is devoted to theoretical aspects of structure-structure 
coupling by dynamic substructuring methods using modal re- 
duction procedures. The proposed methodology can be applied 
to general linear coupled systems such as fluid-structure interac- 
tion problems (Morand and Ohayon, 1995; Soize, Desanti and 
David, 1992). 

For linear structural vibrations, dynamic substructuring tech- 
niques based on the use of the fixed-interface modes or free- 
interface modes (completed by static boundary fhnctions, at- 
tachment modes, residual flexibility, etc.) of each substructure 
have been Widely developed in the litterature: for conservative 
structures see, for example, Hurty (1965), Craig and Bampton 
(1968), MacNeal (1971), Rubin (1975), Flashner (1986), 
Min, Igusa, and Achenbach (1992), Farhat and Geradin (1994) 
and, for damped structures, Klein and Dowell (1974), Hale and 
Meirovitch (1980), Leung (1993), Farstad and Singh (1995), 
and Rook and Singh (1995). 

Some papers are based on a mixed formulation using a La- 
grange multiplier in order to impose the linear constraints on 
the coupling interfaces (see Klein and Dowell, 1974; Min, 
Igusa, and Achenbach, 1992; Farstad and Singh, 1995; Rook 
and Singh, 1995). Within the context of finite element discreti- 
zation of linear structural dynamic problems, Farhat and Gera- 
din (1994) have also introduced a Lagrange multiplier to take 
into account incompatible meshes on the interface (their analy- 
sis is devoted to undamped structures using a component mode 
method based on fixed-interface modes and static boundary 
functions). 
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Below, we present an original general approach for damped 
structures using continuum-based variational formulations and 
Ritz-Galerkin projection methods using free-interface modes 
and fixed-interface modes of each substructure (in this paper 
we do not consider mathematical aspects of error estimates 
connected to the truncation of the modal series). For this pur- 
pose, various rigorous algebraic decompositions of admissible 
classes of the unknown fields are introduced and leads to several 
linear dynamic substructuring methods, the continuity of the 
displacement field on the interface being imposed through the 
use of a Lagrange multiplier field. As a consequence, the final 
system for the mixed formulation has a rank deficiency in the 
matrix that describes the constraints. This leads to nonunique- 
ness of the solution. In order to avoid this difficulty, a new 
constructive approach is proposed consisting in using a Singular 
Value Decomposition (SVD) of the frequency-independent 
constraint matrix and chose a "least-square" solution that is in  
fact the solution of the original problem. Due to a relatively 
small number of degrees-of-freedom in the reduced model, the 
use of SVD is particularly efficient. Since the problem under 
consideration is linear, SVD is used only once. Consequently, 
the SVD appears as an efficient and reliable tool to solve this 
rank deficiency problem. It should be noted that SVD has been 
used for undamped linear vibration analysis of plates using 
dynamic substructuring by analytical methods (Jen, Johnson 
and Dubois, 1995). Let us recall that SVD has also been used 
in the area of the nonlinear dynamical analysis of multibody 
systems with nonlinear constraints (Singh and Likins, 1985; 
Shabana, 1991; Schmidt and Mtiller, 1993). 

Now we give a short description of the content of each sec- 
tion. 

Section 2 deals with the displacement and mixed variational 
formulations for the coupled linear structure-structure problem, 
the Lagrange multiplier field being introduced in the mixed 
problem. In Section 3, we present a dynamic substructuring 
method using the free-interface modes of each linear substruc- 
ture. The modal reduction procedure is carried out using a new 
explicit construction of the Lagrange multiplier admissible 
space. Two practical constructions of the frequency response 
function of the global linear damped structure and the eigenval- 
ues of the associated conservative structure are performed using 
SVD once on a part of the linear system to be solved, namely 
on the frequency-independent Lagrange multiplier terms. 

Section 4 is devoted to a dynamic substructuring method 
using the classical Craig and Bampton fixed-interface modes 
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and boundary static functions of each linear substructure, pre- 
sented in an original general framework allowing various other 
decomposition procedures to be obtained. After having con- 
structed the reduced matrix model of each substructure, we 
explain two procedures for the assemblage of the substructures 
and the construction of a solution, (1) in a classical manner 
and (2) as in Section 3 using Lagrange nmltiplier field and 
SVD. 

Finally, in Section 5, some conclusions are presented. 

2 D i s p l a c e m e n t  and M i x e d  Variat ional  F o r m u l a -  
t ions for the Coup led  S truc ture -S truc ture  P r o b l e m  

2.1 General Mechanical Hypotheses. In this section, the 
following hypotheses are introduced: 

• One considers the linear vibrations of a three-dimensional 
structure about a static equilibrium configuration which is con- 
sidered here as a natural state (for the sake of brevity, prestress 
are not considered but could be added without changing the 
theory). 
• The structure is only submitted to prescribed external forces 
(no prescribed displacement). 

With the above hypotheses, there are two cases. 

l The first one, which is the only case considered in this 
paper, corresponds to prescribed external forces which are in 
equilibrium at each instant. Consequently, the displacement 
field of the structure is defined up to an additive rigid-body 
displacement field. In this case, we are only interested in the 
part of the displacement field due to the structural deformation. 
We will see below how the rigid-body displacement field can 
be disregarded. 

2 The second case corresponds to prescribed external forces 
which are not in equilibrium at some instants. To solve this 
problem, the method consists in transforming this case to the 
first case by adding an additional external force related to rigid- 
body field. For the sake of brevity, this case will not be consid- 
ered in the present paper. 

One presents a variational formulation of the problem (first 
case), taking into account an additional small structural damp- 
ing based on a linear viscoelastic model with an instantaneous 
memory. A frequency domain formulation is used, the conven- 

tion for the Fourier transform being u(w) = f R e - ~ u ( t ) d t  
where w denotes the circular frequency, u(w) is a vector in C 3 
and ~(w) its conjugate (~ and C denote the set of real and 
complex numbers, respectively). 

2.2 Notation for a Substructure for. We consider a 
structure formed by substructures that will be denoted by an 
index r. Let fL be the three-dimensional bounded domain occu- 
pied at static equilibrium by the substructure labelled by index 
r. Let 0f2~ = F,. U F with F,. ~ F = 0 be the boundary of ~,  
(assumed to be smooth). The boundary F will be the interaction 
surface with another substructure. The external prescribed volu- 
metric and surface force fields applied to ~ and Fr are denoted 
by gn~ and gr,, respectively. Let u" = (u'~, u[, u~) be the 
displacement field at each point x = (x~, x2, x3) in cartesian 
coordinates. The set of admissible displacement fields with val- 
ues in C 3 (resp. in ~3) is denoted by Ca, (resp. ~ , )  and is 
used for dissipative problems (resp. associated conservative 
problems). For substructure fL, one denotes the test function 
(weighted function) associated with u '  as 6u" ~ Cz~ (or in 
~'R~). The strain tensor is defined by 

1 r r ~(u")  = ~(u~ + u~,~), (1)  

in which v j denotes the partial derivative of v with respect to 
x;. The total stress tensor is defined by 

~r't,,t = or" + icvs", (2) 

where crr is the elastic stress tensor defined by o-~(u') = 
aijkhekh(U") and kvs" is the viscous part of the total stress tensor 
such that s~(u") = bukhCkh(U r) (using summation over repeated 
indices). The mechanical coefficients auk h and bijkh are indepen- 
dent of co and verify the usual properties of symmetry and 
positivity (see Marsden and Hughes, 1983). The mass density 
is denoted by pr. For the dissipative problem, three sesquilinear 
forms on Ca, × C~,. corresponding to the mass, stiffness, and 
damping operators of substructure ~2,., are introduced as fbllows: 

f 
mr(u r, ~U ' )  : prur" 6U' dx, (3) 

~j 

kr(u ', 6U") = f o-;)(ur)%(ru')dx, (4) 
~r 

dr(U ", ~ u r )  = S~(Ur)~O(~Ur)dX. ( 5 )  
2 r 

It should be noted that the hermitian form m" is positive definite 
on Ca, × C~,. The hermitian forms k '  and d" are semi-definite 
positive (degenerated forms) since rigid-body displacement 
fields are allowed in the present case. The set 2R~]a of R3-valued 
rigid-body displacement fields (of dimension 6) is a subset of 
Car. Consequently, for all 6u" in Car, k '(u",  6u ~) and d"(u", 
6u") are equal to zero for any u" in Rl':~a. 

We then define the following sesquilinear form z" on Ca,. 
x C f ~ :  

Z"(u", 6u") : -~2m"(u" ,  ~u r) 

+ icod"(u", 6u')  + k"(u", ~ur). (6) 

Finally, we define f" by the relation 

- 
((f~, 6u")) = g~, "6u'dx + gr, "ru"ds. (7) 

~r r 

2.3 Continuum-Based Variational Formulations for 
Two Coupled Substructures Fit and ~2. We consider a 
structure composed of two substructures f~ and f2= that interact 
through a common boundary F (the extension to the case of 
more than two substructures is straightforward). The notations 
introduced in Section 2.2 are used with r = 1 and r = 2. The 
linear coupling conditions on F are written as 

u ~ = u 2 on F, (8)  

cr ~otn t 2 2 =-cr~,,~n on F, (9) 

where n ~ is the unit normal to F, external to IF. 

2.3.1 Basic (u ~, u e) Variational Formulation Po. For all 
real w in R and prescribed ( f l ,  f2), find (u ~, u 2) in C~ × 
C~2~ verifying the linear constraint u j = u z on F, such that, for 
all ( ru  ~ , 6u 2) in Ca, × Ca~ verifying the linear constraint 6u t 
= 6u 2 on F, one has 

z~(u ~,ru ~ ) + z = ( u  2,6u 2) 

= ( ( f t , 6 u ' ) )  + <(f2,6u2)). (10) 

From the mathematical point of view (see Dautray and Lions, 
1992), by taking Sobolev space H~(~ ", C 3) as admissible 
space C~,, the existence and uniqueness of a solution of P0 can 
be proved. 

2.3.2 Mixed ( u I, u 2, k) Variational Formulation P~ . This 
formulation consists in relaxing the linear constraint (defined 
by Eq. (8)) used in P0 by the introduction of a Lagrange multi- 
plier field ~ defined on F. Let Ar be the admissible set of 
Lagrange multiplier fields defined on F with values in C 3. 
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Formulation P~. For all real w in E and prescribed ( f~ ,  
f~) ,  find (u  ~ , u 2) in C~ × C,~ and k in Ar such that. for all 
(6u ~ , 6u 2) in C., × C~ and for all 6~ in At,  one has 

ZI(U 1 , 6U 1 ) q- Z2(U 2, (SU 2) 

+ b ( k ,  6u ~ - 6u ~) + b (6k ,  u I - u z) 

= ( ( f l , 6 u , ) )  + ( ( f2 ,6n=) ) ,  (11) 

where b ( . ,  .) is defined by 

£-  b ( k ,  u") = k '  urds. (12) 

Space of traces on F. The set of the traces related to the 
boundary F, is denoted by Cr. Therefore, if u ~ ~ C~,., then the 
trace of u ~ on F is denoted by U~'r and belongs to Cr. In Eq. 
(11 )., Ar is the dual space of Cr. 

Remark. From the mathematical point of view (see Dautray 
and Lions, 1992), by taking C~ = H~(~  '', C3)),  Cr = Hart(F,  
C 3) and Ar = H-~/~(F, c a ) ,  the existence and uniqueness of 
a solution of formulation P~ can be proved using the so-called 
LBB condition related to the sesquilinear form b (see Brezzi 
and Fortin, 1991 ). It should be noted that H~/~(F, C ~) is dense 
in H-I /2(F,  C3). 

3 Dynamic Substructuring Using the Free-Interface 
Modes of Each Substructure 

The method is based on the use of the mixed variational 
formulation defined by P~. Then, a modal reduction is carried 
out using the Ritz-Galerkin projection on the free-interface 
modes of each substructure. Finally, the Singular Value Decom- 
position (SVD) is used for the construction of the solution. 

3.1 Free-Interface Modes of a Substructure f~. A free- 
interface mode of a substructure f~ (for r = 1 or r = 2) is 
defined as an eigenmode of the conservative problem associated 
with the substructure fL, subject to zero forces on F. The real 
eigenvalues ca 2 -> 0 and the eigenmodes u ~ in R ~  are solutions 
of the following spectral problem: find co 2 -> 0, u '  E Ra,  (u  r 
:~ 0) such that for all 6u" E R~,, one has 

kr (u  r, 6U") = ¢oZmr (ur, 6ur). (13) 

It can be shown that there exist six zero eigenvalues 0 = 
(c0"_5) 2 = . . .  = (w~) 2 (associated with the rigid-body displace- 
ment fields) and that the strictly positive eigenvalues (associ- 
ated with the displacement field due to structural deformation) 
constitute the increasing sequence 0 < (col) 2 -< (co;~) 2 . . . . .  
The six eigenvectors { uL5 . . . . .  ua } associated with zero eigen- 
values span Rrig (space of the rigid-body displacement fields). 
The family {uL5 . . . . .  u~; u7 . . . .  } of all the eigenvectors 
forms a complete set in R a .  For o~ and/3 in { - 5  . . . . .  0; 1, 
• . . } ,  we have the orthogonality conditions 

m"(u~,, u~) = 6,e# r,  (14) 

kr(u~ uD " ~ , = 6=tj#,~ ~o,~, (15) 

in which ~ > 0 is the generalized mass of mode a depending 
on the normalization of the eigenmodes. 

3.2 Modal Reduction of P~. We introduce the subspace 
cNr r ° ' ° ' r a, of Ca,  of dimension Nr, spanned by { uT, UN~ } with 
Nr --> 1. For all u r in C~'i, one has 

N r 
u"= ~ q~u~,, (16) 

in which q~ are complex-valued generalized coordinates. Con- 
cerning the trace of the displacement field (including rigid-body 

displacement field) on F, the subspace spanned by the family 
{u"-51r . . . . .  U~lr; u~lr . . . .  } is a complete set in Cr (for the 
two domains r = 1 and r = 2). Consequently, the family 
{U~lr . . . .  } forms a complete set of the displacement field on • N 
F due only to the structural deformation. Let CF be the subspace 
of Cr spanned by the finite family {u'ilr . . . . .  uS, t,. } . Let 
W N be the subspace of Cr of finite dimension N -< Nz + N2 
defined by 

W ~  : C~, U C~2. (17) 

The present approach is based on the fact that any k in Ar 
can be expanded on a complete orthonormal set in Cr and 
consequently, the projection of the Lagrange multiplier k is  
done on the subspace W N of Cr c At.  A characterization of 
W u requires the construction of a basis of W u denoted b y  
{ w~ . . . . .  WN}. One possible method consists in extracting an 
independent system of N functions from the family { u ~lr . . . . .  

[ 2 2 UNur, UlIr . . . .  , UN~ir}. Consequently, for all k in W v  N, one 
has 

N 
h = Y~ p~w~. (18) 

y=l 
The reduced problem PT '~. We use the Ritz-Galerkin 

method consisting in substituting Eqs. (16) and (18) into Eq. 
(11).  Using the orthogonality conditions defined by Eqs. (14) 
and (15) and introducing the vectors of generalized coordinates 
ql  = (ql  . . . . .  q~N,), q2 = (q2 . . . . .  q~2) and p = (p, . . . . .  

PN), one deduces the following finite-dimension reduced prob- 
lem from P~ 

fZl(0c°) 0 ! i l [ q q ~  ] [ "~l ] ,.~ 
Z2(co) = 2 , (19) 

k B, B2 O 

in which, for all real co and for r = 1 and r = 2, [Z"(co)] is an 
(Nr × Nr) complex symmetric matrix, [Br] a (N × Nr) real 
matrix which is independent of co and F"  a cN,-valued vector, 
Matrix [Z'(co)] is defined by 

[Zr(co)] : -co2[Mr]  + /co[D r] + [K"] ,  (20) 

where [ M  r] and [K"]  are diagonal positive-definite matrices 
such that [M~],~ = /z :6~ and [K"]~/~ = #~co~,25~, [D"]  is a 
full symmetric positive-definite matrix, such that [ D r ] ~  = 
d ' ( u ~ ,  u : ) .  Consequently, for all real co, matrix [Z"(~)]  is 
invertible. Matrix [B,] is such that for all a in {1 . . . . .  Nr} 
and 3' in { 1 . . . . .  N},  one has 

[B,]~ = b(w~, uD. (21) 

Finally, vector . ~  is such that, for all c~ in {1 . . . . .  N~ }, one 
has 

F~ = (( f~, u~)). (22) 

3.3 Practical Construction of the Frequency Response 
Function of the Global Structure Using Reduced Problem 
p~d and SVD. First, we introduce the (N × M) real matrix 
[B]  such that 

M = N , + N 2 ,  [ B J = [ B ,  Bd (23) 

and write Eq. (19) as 

In order to solve Eq. (24),  we use a Singular Value Decomposi- 
tion (SVD) of [ B].  It is know that there exist algorithms (see 
Golub and Van Loan, 1989) which are very efficient for the 
construction of the SVD of reasonable size matrices. This is 
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the case for the reduced problems obtained by modal projection 
as Eq. (24).  In the proposed approach, it should be noted that 
SVD will only be applied to the submatrix [23] in Eq. (24).  
The SVD of (N x M) real matrix [ 23] with M -> N (see Section 
3.2) consists in constructing the following decomposition: 

[231 = [U][Z]{V]  r, (25) 

where [ U] is an (N X N) orthogonal real matrix, IV] is an (M 
× M) orthogonal real matrix and lIE] is a (N × M) real matrix 
which is written in block form as 

{Y,] = [Z + 0],  (26) 

in which [0] is the (N × (M - N))  null matrix and [Y~+] is 
the (N × N) diagonal matrix of positive or null singular values 
crk such that ~z~ _> c~2 -> . . .  -> aN -> 0. Let n be the integer 
such that 1 -< n --- N such that 

al  :> ~r2 > . . .  --- a ,  > a,+~ = . . .  = crN = 0. (27) 

Consequently, the rank of [ 23] is equal to n and Eq. (25) yields 
the SVD expansion 

[23] = ~ akUkV kr, (28) 
k=l 

in which the vectors U ~ and V k are the columns of [ U] and [V] 
and such that 

(U j , U  k) = 6ik, (V j , V  k) = 6j~. (29) 

The range of [23] is spanned by {U ~ . . . . .  U"} and its null 
space by { V "+ 1 . . . . .  V M }. 

3.3.1 First Algebraic Stage of the Practical Construction 
of Solution. Equation (24) has a unique solution if the null 
space of [ 23] r i s  reduced to { 0 }, or equivalently, the dimension 
of the null space of [ 23] is equal to M - N, i.e., if one has n 
= N in Eq. (27).  Generally, we have n < N, which means that 
the linear constraint equations 

[23]q = 0 (30) 

are nonindependent, and consequently Eq. (24) does not have 
a unique solution. In that case, the SVD of [ 23] allows the 
construction of a unique solution q of Eq. (24) in the null space 
of [ 23], i.e., 

M 

q =  Z ~ v  ~. (31) 
k=n+l 

Using Eqs. (28) and (29),  it can be seen that q defined by Eq. 
(31) satisfies Eq. (30).  Using Eqs. (28) and (31),  Eq. (24) 
yields 

M n 

E ~ [ Z ( ~ , ) ] v  k + Z o-~mv ~ = ..T, (32) 
k=n+l k=l 

in which r/k = (U k, p) ,  or equivalently, 

~kV k + ~kr/k[Z(ul)l-~V k = [Z(uJ)] - ' .T .  (33) 
k=n+l k=l 

Equation (32) or (33) shows that (k can be calculated in a 
unique way. 

3.3.2 Second Algebraic Stage of the Practical Construction 
of Solution. 

First procedure. The projection of Eq. (33) on {V 1 . . . . .  
V" } yields 

[E (w) ]y  = e, (34) 

in which [E(w)]  is a (n X n) complex symmetric matrix such 
that [E(~o)]k,k = ([Z(w)]-~V k, W ' ) ,  y = (y~ . . . . .  y,,) is a 
vector in C" with Yk = crkT?k and e = (e~ . . . . .  e,) is a vector 

in C" such that ek = ( [ Z ( w ) ] - ' 5  r, W) .  Then, the projection of 
Eq. (33) on the remaining {V "+j . . . . .  V M } yields for all k in 
{n + 1 . . . . .  M},  

~k = -- ~ Yk' ( [ Z ( 0 ) ) ]  - IVk ' ,  V k) -~- { [Z(o . ) ) ]  -1.~, v k ) .  ( 3 5 )  
k'=l 

The corresponding algorithm is summarized below. 

Step 0: calculating the SVD of [ B] in order to obtain its rank 
n and V 1 . . . . .  V M. 
Then, for each real w, 
Step 1: solving the linear equation of dimension n with n + 
1 right-hand side members { a~; V j . . . . .  V"} 

[ Z ( c v ) ] X ° = Y ;  [ Z ( c v ) ] X k = V  k, k E { 1  . . . . .  n} ;  (36) 

Step 2: constructing (n x n) complex symmetric matrix 
[E(w)]  such that [E(w)],,k = (X *, V k') for k and k '  in {1, 
. . . .  n} ;  
Step 3: constructing C"-valued vector e such that e, = (X °, 
V k) for k in {1 . . . . .  n} ;  
Step 4: solving Eq. (34) which has a unique solution y (by 
construction); 
Step 5: calculating (,+~ . . . . .  ~M such that for all k in {n + 
1 . . . . .  M},  

n 

(k = - ~ Yk'(X r , V  k) + (X °,V~).  (37) 
k'=l 

Step 6: calculating q by using Eq. (31).  

Second procedure. The projection of Eq. (32) on { V ''+ 1, 
. . . .  V M } yields 

[ G ( w ) ] s  ¢ = g, (38) 

in which g = (~,+1 . . . . .  (M) is a vector in C M ", g = (gl . . . . .  
gM-,) is a vector in C M-" such that g~ = ( y ,  W +") and [G(w)]  
is a ( (M - n) X (M - n))  complex symmetric matrix such 
that 

[G(w)]  = -w2[.9~/] + iw[D]  + [ K ] ,  (39) 

where [~ / ] ,  [Jg] and [JQ are ( (M - n) X ( m  - n))  real 
symmetric positive-definite matrices defined, for all k and k '  in 
{1 . . . . .  M - n} ,  by 

[At]k,k = ( [ M ] V  ~+", Vk'+"), (40) 

[Dk'~ = ( [ D ] V  k+', V~'+"), (41) 

[.~S]k,~ = ( [ K ] V  k+", W'+"). (42) 

The corresponding algorithm is summarized below. 

Step 0: calculating the SVD of [ 23] in order to obtain its rank 
n and V "+l . . . . .  V u. 
Then, for each real w, 
Step 1: constructing ( (M - n) X (M - n) )  complex symmet- 
ric matrix [G] such that [G]k'k = ( [ Z ( w ) ] V  k+n, V k'+') for k 
and k '  in {1 . . . . .  M - n} ;  
Step 2: constructing CM-"-valued vector g such that g~ = ( F ,  
Vk+"), k E {1 . . . . .  M - n} ;  
Step 3: solving Eq. (38) which has a unique solution ~ (by 
construction) ; 
Step 4: calculating q by using Eq. (31).  

Comments on the two proposed procedures. 

1 Due to the fact that we have to solve a reduced size 
problem, N and M are small. 

2 In the first procedure, Step 1 is solved substructure by 
substructure independently. For each substructure f~r, if the 
damping operator defined by Eq. (5) is diagonalized by the free- 
interface modes of this substructure, Step 1 is straightforward. If 
not, we have to solve a small (Nr x Nr) full complex symmetric 
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system for each substructure. In Step 4, one has to solve a linear 
system of dimension n with a full (n X n) complex symmetric 
matrix corresponding to the total number of independent linear 
constraints existing in the global structure (assemblage of all 
the substructures). 

3 In the second procedure, Step 1 is relative to the global 
structure (assemblage of all the substructures) and Step 4 re- 
quires to solve a full complex symmetric linear system of di- 
mension M - n. 

4 For example, if there are Ns substructures (in this paper 
Ns = 2) and if the mean value of { N~ } on the set of substructures 

Ns 
is NR = (1/Ns) E N ,  the order of floating operations is Ns × 

r=l 
N~ for the first procedure with a damping matrix of each sub- 
structure which is not diagonalized by the free-interface modes 
of this substructure and, N3s × N] for the second procedure. 

As a conclusion, the first procedure is recommended since it 
is more efficient (particularly, if the damping matrix of each 
substructure is diagonalized by the free-interface modes of this 
substructure). 

3.4 Practical Construction of the Eigenmodes of the 
Global Structure Using a Reduced Spectral Problem and 
SVD. The conservative problem associated to Eq. (24) leads 
to the following spectral problem: 

[ K '  0 ! ~ ]  [ q @ l  [ M l  0 i ]  [qqp: 1 0 K a ~ = w 2 0 M 2 , 
B~ B2 0 0 

(43) 

in which the two matrices defined by blocks are real symmetric 
and independent of ca. Using a global notation as done in Eq. 
(24), Eq. (43) is rewritten as 

[ ~  B o T ] [ ~ ] = t O 2 [  0~¢ ~ 1 [ ~ ] '  (44) 

For this problem, we must use the second procedure defined in 
Section 3.3.2 (in this case, the first procedure cannot be directly 
used since [ K ]  - co2[M] is not invertible for all real values 
of w). Substituting Eq. (31 ) in the first row of Eq. (44), project- 
ing it on {V "+1 . . . . .  V M } and using Eq. (29), yield 

[,~1~ = aj2[ff~/]~, (45) 

in which [ffv/] and [JQ are defined by Eqs. (40) and (42). 
The corresponding algorithm is summarized below. 

Step 0: Calculating the SVD of [ B] in order to obtain its rank 
n and V "+ l . . . . .  V M. 
Step 1: constructing ((M - n) × (M - n)) real symmetric 
matrices [M] and [gQ; 
Step 2: solving the generalized eigenvalue problem defined 
by Eq. (45) ; 
Step 3: calculating the eigenmodes u = (u t, u2) of the struc- 
ture by using Eqs. (31) and (16). 

4 D y n a m i c  Subs truc tur ing  Us ing  the F ixed- Inter face  
M o d e s  of  Each  Subs truc ture  

In this section, we present a modal reduction procedure based 
on formulation P~ using SVD (see Section 2.3.2) starting from 
a reduced matrix model for each substructure f2r. 

4.1 Reduced Matrix Model of Substructure fl~. 

4.1.1 Basic u ~ Variational Formulation for Substructure 
f~. Consider substructure fL submitted to the external applied 
forces gar in ~L, grr on Fr and gr on the interaction surface F. 

The basic variational formulation for substructure fir is writ- 
ten as follows. 

Basic problem PT. For all real w in ~ and prescribed f" 
defined by Eq. (7), find u" in Car such that, for all 6u" in 
Car, one has 

z~(u r, 6u r) = ((fr, 6Ur)) + ((fr, 6U')), (46) 

in which z r is defined by Eq. (6) and where ((fr, 6u')) = 

f r  gr" 6urds" 

4.1.2 Fixed-Interface Modes of  Substructure f~,.. A fixed- 
interface mode of a substructure f~r (for r = 1 or r = 2) is 
defined as an eigenmode of the conservative problem associated 
with the substructure f2r, which is fixed on F. Since the problem 
is conservative and defined in a bounded domain, all the quanti- 
ties are real. Consequently, we introduce the set R°r defined 
by 

RAt= {6u r ~  Ra~16u"= 0 on F}, (47) 

in which Rat is defined in Section 2.2. The real eigenvalues w 2 
> 0 and the eigenmodes u r in R ~  are solution of the following 
spectral problem: 

Find w 2 > 0, u ~ E R ° a~ (u" ~ 0) such that for all 6u" E 

R~r, one has 

U ( u  ~, 6u  r) : ov2m~(u r, 6u~), (48) 

in which m r and k ~ are defined by Eqs. (3) and (4), respectively. 
It can be shown that the eigenvalues constitute and increasing 
sequence 0 < (w~) 2 -< (w[) 2 . . . . .  The family {u~, u[ . . . .  } 
of the eigenvectors associated with the eigenvalues, forms a 
complete set in R~ .  For a and g in { 1, 2 . . . .  }, we have the 
orthogonality conditions similar to Eqs. (14) and (15). 

4.1.3 Introduction of the Elastostatic Lifting Operator S". 
We consider the solution u~t,~ of the elastostatic problem of 
substructure f~ subjected to a prescribed displacement field 
U~r on F. Let R r  and R~! r be the sets of functions such that 

R r =  {X~Ur (X) ,  VxC F}, (49) 

R~i r = { u " 6  R ~ l u  ~ = U~r on r} .  (50) 

The field u~t,t satisfies the following variational formulation: 

r r r rDU~F V6U r ~ R~°~r ( 5 1 )  k ( u  ..... 6u r ) = 0 ,  u .... ~ ~-a,., 

where R°a, is the space R~ ]r obtained for U~r = 0. The solution 
u~t,t of Eq. (51) defines the linear operator S r from R r  into 
Ra,. (called lifting operator in mathematics), such that 

U~r ~ u~t.t = S"(U~r). (52) 

We denote the range space of operator S" as Rra~ C Rat such 
that R ~  = S"(Rr).  It should be noted that the discretization 
of S ~ by the finite element method is obtained by a classical 
static condensation procedure (sometimes called the Schur com- 
plement) of the stiffness matrix of substructure fir with respect 
to degrees of freedom on F. 

4.1.4 Conjugate Relationships Between u~ and U~tat. Tak- 
ing 6u ~ = u~ in Eq. (51), for u~t~t satisfying Eq. (51) yields 

kr(u~tat, U~) = 0. (53) 

For a given mode (w;,  u~ E R~r), the modal reaction forces 
F~ = ffr(u~)nr on F is defined by the variational property 
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¢ 
kr(u~ 6u ~) ,.2 ,- ,. 6u ~) j F F ~  .SUrds, , - (W.) m ( u . ,  = 

V6u"E R a .  (54) 

Using Eqs. (48) and (53), Eq. (54) yields 

mr(U~tat, U~)  = -- (CO~)"-'''~ F~" u~rds. ( 5 5 )  

Consequently, for all field U~r in R r  and u~ in R~°~,, one has 

kr(S~(u~r), u2) = 0, (56) 

m"(Sr(u]'r), U~,) - (co~)'''"~ F~ '  u~rds. (57) 

4.1.5 Decomposition of R~ r and Ca,. Due to the fact that 
the trace of u ~ - u~t,, is zero on F, we have the following 
decomposition: 

R~, = R~,. ® R~ ,  (58) 

u " =  S"(u]r) + Y. q~u~, (59) 
ff=l 

Let C~ and C~ be the complexified vector spaces of R~r and 
R~°~,, respectively. One then has 

Car = Car, ~ C~, (60) 

and Eq. (59) holds with u]r  being a CLvalued field and q~ 
complex numbers. 

4.1.6 Construction of the Reduced Matrix Model. We in- 
troduce the subspace 0.U 0 Car, of Ca,., of dimension N,., spanned 

.. , r ~_ Car ~ of G~ by { u~, . uu, } with N,. 1 and the subspace r.~ 
such that 

F,N F 0,N 
C~2r r Ca, ~ Ca, ~ (61 ) 

For all u r and 6u" in c~N'), one has 

N r 

u r = S"(u~r) + ~ q~u~, (62) 
e¢=l 

N r 

6u r = S~(6U~r) + ~ 6q~u~. (63) 
c~=l 

We use the Ritz-Galerkin method related to space C O ar con- 
sisting in substituting Eqs. (62) and (63) into Eq. (46). Using 
the conjugate relations (56) and (57) and the orthogonality 
properties (14) and (15) for fixed-interface modes, we obtain 
in abstract operator notation 

[Zf-(co) 'A"(~) ] [ u f ]  = [ ~ ]  ' (64) 
A'(co) [Z~(co)] L q r j  

in which qr = (q]" . . . . .  q~,,.) is the vector of generalized coordi- 
nates related to the fixed-interface modes, F ~ = (F~ . . . . .  
FN,) is the vector whose components are given by Eq. (22) 
using the fixed-interface modes and fr is defined in Section 
4.1.1. 

1 For all real co, linear operator Z ~(co) is defined by the 
following sesquilinear form on c~r~ × C~,: 

((Z ~(co)U~r, 6u]'r)) = Z"(Sr(u]'v), S'(6U~'r)). (65) 

From Eq. (6), we deduce the following abstract operator equa- 
tion: 

Z ~-(co) = -co2Mf- + icoD[- + K~-, (66) 

in which the mass, damping, and stiffness operators M~, D~, 
and K~ are defined by 

((M~u~r, bu~r)) = m"(S~(u~r), S"(6Ulr)), (67) 

((D~LU~F, 6U~F)) -~ d r ( a r ( u ~ F ) ,  s r ( ~ U ] F ) ) ,  ( 6 8 )  

((K~u~v, ~u~v)) = U(S"(u~r), S~(6u~r)), (69) 

where m ~, U, and d" are defined by Eqs. (3), (4), and (5), 
respectively. It should be noted that these operators are related 
to surface F and correspond to the static condensation on F of 
the mass, stiffness (Guyan, 1965) and damping operators using 
the elastostatic operator S" defined in Section 4.1.3. 

2 For all real co, the (N~ × N~) complex symmetric matrix 
[Z"(w)] is defined by Eq. (20) using the fixed-interface modes. 
It should be noted that if the damping operator defined by Eq. 
(5) is diagonalized by the fixed-interface modes, matrix 
[Z~(w)] is diagonal. 

3 For all real co, the linear operator Ar(co) is defined by 
the following sesquilinear form on C r,. × C N, 

((Ar(w)u~r, ~qr )) = ~ Zr(Sr(u~F), U~)6q~, (70) 
a=l 

in which 6q" = (6q'~,.. 6q~,). From Eq. (6), we deduce the 
following abstract operator equation: 

= -co A,,, + icoA~, AT(w) 2 r (71) 

in which A,~, and A;i are operators defined by 

N r 

((A~u~'r, 6qr)) = ~ m"(Sr(u~r), u~) 6q2, (72) 
c¢=1 

N r 
( (A~U~ 'F ,  ~q"})  = ~ d r ( x r ( g ~ r ) ,  n ~ )  ~q~,  ( 7 3 )  

a=l 

in which Eq. (56) has been used. The quantities m" (S"(u~r), 
u~) are calculated using Eq. (57) and d"(S"(n~r), u~) using 
Eqs. (5), (51), and (52). Finally, operator 'An(w) is defined 
by the following sesquilinear form on C N, × C~, such that 

N,. 
(('Ar(co)q r, 6U~r}) = ~ q~zr(u~, sr(6urv)). (74) 

In conclusion, the matrix (of operators) in the left-hand side of 
Eq. (64) is called the "reduced matrix model" of substructure 
fir relative to the displacement field u ~r on F and the N~ general- 
ized coordinates (which can be viewed as "internal generalized 
degrees-of-freedom" ). We refer to Morand and Ohayon ( 1995 ) 
for the particular case of an undamped structure. 

4.2 Frequency Response Function and Eigenmodes Con- 
structions for the Global Structure Using the Mixed Vari- 
ational Formulation and SVD. 

4.2.1 Modal Reduction of Mixed Problem P~. The reduc- 
tion of P, defined in Section 2.3.2 is obtained using the reduced 
matrix model defined by Eq. (64) for each substructure. Recall 
that the projection of Lagrange multiplier k must be done on 
the subspace W~ of Cr c At. A characterization of W~ re- 
quires the construction of a basis of W~ denoted by { Wl . . . . .  
WN }. Consequently, for all k in W~, one has Eq. (18). Substi- 

N 
tuting Eqs. (62), (63), (18) and 6k = Y. 6p~w~ into Eq. ( 11 ), 

we obtain 
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-Z~(OO) t ~1 ((.j) 0 0 tB, FUFq FO 
A~(~) [Z'(w)] 0 0 0 , q ~ /  

~1 0 ~2 0 0 

(75) 

in which we can recognize the reduced model of each substruc- 
ture (see Eq. (64)).  Using Eq. (12), for r = 1, 2 and 3' in {1, 
. . . .  N} ,  operators 7/1 and 7/z are defined by 

[7/,], = b(w~, uF). (76) 

4.2.2 Practical Construction of the Frequency Response 
Function Using SVD. Since 7/~ and 7/2 are independent of w, 
Eq. (75) can be rewritten as 

where Q = (u~-, ql,  u~, q2). Equation (77) being similar to 
Eq. (24), the practical construction is carried out as described 
in Section 3.3. 

4.2.3 Practical Construction of the Eigenmodes Using SVD. 
The conservative problem associated to Eq. (75) leads to the 
following spectral problem: 

7/1 

o o o furl 
t ,l o o o /  / q [  o o '7/21 u 

0 0 7/2 0 [~2 ]  0 00] Lq2 ] p 

[M~- , 1 ..TL, 0 0 
A],, [ M  l ] 0 0 

= w 2 0 0 M~ 'Am2 
o o A~, [ M  2] 
0 0 0 0 

0J 
/uq; 

 Lq; 
(78) 

Equation (78) is rewritten using the global notation introduced 
in Eq. (77) and is then similar to Eq. (44). Consequently, we 
can use the method presented in Section 3.4 for solving this 
spectral problem. 

4.2.4 General Comments. In the case of a finite element 
discretization with incompatible mesh on F, the method pre- 
sented in Section 4.3 (Eqs. (75) and (78)) is efficient because, 
since 7/1 and 7/2 are independent of co, the SVD is carried out 
once and for all (even if the sizes of the matrices of the discret- 
ized operators 7/~ and 7/2 are important). 

5 Conclus ion  

Within a general continuum-based approach, we have pre- 
sented two dynamic substructuring procedures by modal reduc- 
tion methods in order to calculate the frequency response func- 
tion of linear damped structures and the eigenmodes of the 
associated conservative systems. The free-interface and fixed- 
interface modes of each substructure are used within a mixed 
variational formulation involving Lagrange multiplier fields de- 
fined on the coupling interfaces. Generally, the introduction of 
a Lagrange multiplier field associated with kinematic linear 
constraints induces some difficulties for the construction of the 

solution due to the rank deficiency of the obtained linear system. 
In the present paper, the Singular Value Decomposition (SVD) 
method is applied to the frequency-independent Lagrange multi- 
plier terms. The use of SVD is particularly efficient due to a 
relatively small number of degrees-of-freedom in the reduced 
model and is used once. Therefore, the SVD appears as an 
efficient and reliable tool for this problem. 
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Exact Solutions for Simply 
Supported Laminated 
Piezoelectric Plates 
Exact solutions are presented for  the static behavior of  laminated piezoelectric plates 
with simple support. The upper and lower surfaces o f  the laminate can be subjected 
to a number of  applied loadings, confined in this study to an applied transverse load 
or a ~7oecified surface potential. Each layer of  the laminate can be piezoelectric, 
elastic~dielectric, or conducting, with perfect bonding assumed between each inter- 
face. Expressions are obtained for  the components of  displacement, stress, electric 
displacement, and potential through the thickness of  the laminate. Representative 
examples are shown to demonstrate the fundamental behavior, and the influence of  
the piezoelectric coefficients and internal electrodes are discussed. 

1 Introduction 

Following the initial theoretical developments of piezoelec- 
tric solids documented in the works of Voight (1928), Mason 
(1950), Cady (1964), and Nye (1972), a number of significant 
studies have appeared considering the analysis of laminated 
piezoelectric plates. The fundamental work of Tiersten (1969) 
gave much of the necessary theoretical development for the 
static and dynamic behavior of a single-layer piezoelectric plate. 
Lee and Moon (1989), Lee (1990), and Lee and co-workers 
( 1991 ) used the assumptions of Kirchhoff plate theory to derive 
a simple theory for piezoelectric plates, used primarily for the 
design of piezoelectric laminates for bending and torsional con- 
trol. Lazarus and Crawley (1989) developed pin-force and con- 
sistent plate models for the design of induced strain actuators. 
Dimitriadis and co-workers (1989) and Wang and co-workers 
(1989) developed a two-dimensional model for rectangular 
plates to represent the behavior induced by piezoceramic 
patches bonded to the bottom and top surfaces of a laminate. 
Wang and Rogers (1991) used the assumptions of classical 
lamination theory combined with inclusion of the effects of 
spatially distributed, small-sized induced strain actuators em- 
bedded at any location of the laminate. 

In most previous studies, an attempt was made to represent 
the behavior of piezoelectric laminates under mechanical and 
electrical loading using some type of approximation to the elas- 
tic and electric fields. Ray (1993) studied the behavior of an 
elastic layer bonded to a piezoelectric layer in a more exact 
sense, but included the assumption that the through-thickness 
piezoelectric coefficient e33 was zero. This constraint results in 
solutions of significantly different form than those where this 
constant is included (Heyliger, 1995). In this study, the static 
behavior of laminated, piezoelectric plates as modeled by the 
linear theory of piezoelectricity is studied using an exact solu- 
tion for simply supported plates. The solution strategy follows 
similar work of Pagano (1970) for laminated elastic plates and 
Heyliger and Brooks (1995) for piezoelectric laminates under 
cylindrical bending. The results obtained using the solution 
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methodology presented here should provide a useful means of 
comparison for approximate piezoelectric plate theories. 

2 Exact Solution 

Governing Equations. The geometrical configuration of 
the laminate is such that the thin or thickness dimension of the 
laminate coincides with the z-direction, with the lengths of the 
plate in the x and y-directions denoted as Lx and Ly, respectively. 
The total plate thickness is denoted as H. Each layer of the 
laminate can be elastic or piezoelectric. The general problem 
considered in this study is to determine the behavior of the 
elastic and electric field components throughout the laminate 
under an applied mechanical or electrical loading. The forcing 
function is introduced through either an applied surface dis- 
placement, traction, potential, or electric charge. It is also possi- 
ble to consider internally applied quantities in this formulation. 

A single piezoelectric layer has the constitutive equations 
given in compressed notation as (Tiersten, 1969) 

~rp = Cl, qS q - ekpEk 

Di : eiqgq Jr- ~ikEk (1 )  

where p and q take the values 1 . . . . .  6 and i and k take the 
values 1 . . . . .  3, ap are the components of the stress tensor, Cpq 
are the elastic stiffness components, Sq are the components of 
infinitesimal strain, e~q are the piezoelectric coefficients, Ek are 
the components of the electric field, Di are the components of 
the electric displacement, and eik are the dielectric constants. 
The poling direction is coincident with the x3 or z-axis. 

The displacement components ui, where uj = u, uz = v, 
and u3 = w, are related to the strain components through the 
relations 

S~ = ~ \ Oxk + Ox, / 

where Sik = Sp when i = k and p = 1, 2, 3 and 2Si~ = Sp when 
i :~ k and p = 4, 5, 6 (Tiersten, 1969). The electric field 
components can be related to the electrostatic potential ~ using 
the relation 

Ei = - - - .  (3) 
Oxi 

For the materials used in this study, it is assumed that the 
nonzero components of the rotated piezoelectric tensor eke, are 
e3j, e32, e33, e24, and e~5. The elastic stiffnesses Cpq are those 
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of an orthotropic material, and the dielectric constants are given 
by ell, e22, and e33. 

The equilibrium equations in the absence of body forces are 
given in terms of the uncontracted stresses as 

au. j = 0. (4) 

The charge equation of electrostatics is given as 

Di.i = 0. ( 5 )  

Substituting in the constitutive relations, the stress-strain rela- 
tions, and the field-potential relations gives the governing equa- 
tions of the problem in terms of the displacement components 
u, v, and w and the electrostatic potential q~ as 

CH Ozu O2v O2w 
Ox----- 7 + Cl2 ~ + Cl3_ --OxOz 

024 a + / O~u O~v 
+ e3' oxOz C66~ O T  + OxOy ] 

c ( 0~" O~w'~ 0 ~  
+ 551x~z2 + OxOz] + el, 0 ~ z  = 0 (6) 

02bl 0211 02W 
Ci2 ~ + C22 --Oy 2 + C23 --OyOz 

c f 
+ e3z OyOz + 44~Z2 + OyOz/ 

+ 66~0-~y + Ox2/I + ez4 0--~z = 0 (7) 

O2u OZv 02w 
C1~ ~ + C~ O ~ z  + C~ Oz---- ~ 

+ C23 03~z + e24 0y--- 7 + 44~ 02 2 + OyOz/ 

c ( o (8) + '~\bTg-z + Ox~/+ e~ Oz--- z = 

02u 02v 02w 
_ O%k + e31 e32 O ~ z  e33 Oz 2 

+ e32 ~ - e22 Oy 2 e24~ Oy--- 5- + OyOz] 

[/ 02b! 02W~ 02~ 
- e 1 5 / 7 - - - 7 -  + - - -  = 0 .  ( 9 )  \ OXUZ ~ ' }  ~:33 OZ 2 

These represent the governing equation for a single piezoelectric 
layer. For a layer with no piezoelectric effects, these equations 
reduce to the three-dimensional equations of elasticity and, as- 
suming eH= c22 = E33, the Laplace equation for electrostatics. 

For the problems considered in this study, an arbitrary num- 
ber of laminae are assumed to be perfectly bonded together. At 
the top and bottom surface of the laminate, a specified load, 
displacement, potential, or charge can be specified. Of primary 

interest here are the cases in which either a known normal 
traction or potential are imposed on the top and/or bottom 
surfaces. These are the cases considered in this study, with the 
shear tractions specified to be zero on the top and bottom sur- 
faces in both cases. The laminate is assumed to be simply sup- 
ported, and the vertical edges of the laminate are assumed to 
be grounded. Hence along a plate edge, the normal stress, tan- 
gential displacement, transverse displacement, and potential are 
specified to be zero. 

Both the applied load and potential can be expressed in the 
form of a Fourier series. These functions are represented in the 
form 

q(x,  y) = qo sin px sin qy 

~(x,  y) = 6o sin px sin py 

10) 

11) 

where 

nTc 
p = p ( n )  = - -  

Lz 
12) 

mTr 
q = q(m) = - -  13) 

Ly 

where the expressions can be used either for the top or bottom 
of the laminate. 

At each interface between layers, continuity conditions of 
displacement, traction, potential, and electric displacement must 
be enforced. Using an indexing scheme, the conditions for the 
ith layer can be expressed as, for example, 

Here i represents the layer number, with i = 1 the top layer, 
each layer has an individual coordinate system with the origin 
at the left end in the center of the layer, and hi is the thickness 
of the ith layer. Similar interface conditions exist for V, W, q!,, 
~ ,  7-x~, ~-y~, and Dz. At a single interface of a laminate with n 
plies, there are six conditions related to the elastic variables and 
two conditions related to the electrostatic variables for a total 
of 8(n - 1) conditions. At both the top and bottom surfaces, 
there are three elastic boundary conditions and one electric 
condition for a total of eight conditions. Enforcing all conditions 
leads to 8n equations relating the variables within all layers of 
the laminate. 

Method of Solution. Solutions for the displacement com- 
ponents and the electrostatic potential are sought in the form 

u(x, y, z) = U(z) cos px sin qy = U exp(sz) cos px sin qy 

v(x, y, z) = V(z)  sin px cos qy = Vexp(sz) sin px cos qy 

w(x,  y, z) = W(z)  sin px sin qy = W exp(sz) sin px sin qy 

~b(x, y, z) = ~(z) sin px sin qy = ~ exp(sz) sin px sin qy. 

(15) 

Here the overbarred terms are constants and s is an unknown 
number. Substitution of these expressions into the equilibrium 
and charge equations results in the system of equations 

I 
Cllp  + C66q 2 - C55s 2 

pq(  Ci2 + C66) 
ps( C13 + C55) 
ps(e15 + e31) 

pq( C12 + C66) 
C66P 2 + C22q 2 - C44 $2 

qs( C23 + C44) 
qs(e24 + e3z) 

- p s ( C I 3  + C55) 
- q s (  C23 + C44) 

C55p 2 + C44q 2 - C33s 2 
elsp 2 + e24q 2 -- e33 $2 

-(e31 + els)ps "] 
-qs(e32 + e24) | 

e~sP 2 + e24q2 -- e33s2 / 
- -El lP  2 -- E22q 2 @ C33s2A 

U 
? 

= 16) 
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Setting the determinant of this matrix to zero results in the 
characteristic equation 

As ~ + B s  6 +.Cs 4 + Ds 2 + E =  0. (17) 

Expressions for the coefficients of this polynomial are lengthy 
and are not given here. This characteristic equation can be writ- 
ten as the fourth-order equation 

r 4 4- cr 3 + dr 2 4- er + f =  0 (18) 

where 

B C 
r = s  2 c = - -  d = - -  (19) 

A A 

D E 
e = ~ f = ~ .  (20) 

The roots of this equation are a function of the material proper- 
ties and the form of the applied load and potential as represented 
by p and q. They can be real, imaginary, or complex. Regardless 
of the nature of the roots, the solutions for a given s are based on 
and initial construction of the solution for U(z) .  The remaining 
components can then be computed using Eq. (16), which is 
rearranged in terms of the unknown constants as 

Here F~ and Gj are real constants, there is no sum on j ,  and the 
functions C and S and the value m are defined as 

Cj=cosh(mjz)  S j ( z )=s inh (m:z )  c~j= l ( y > 0 )  (28) 

Q = cos (m/z) Sj(z) = sin (mjz) 

% = - 1  (3' < O) m: = IsjI. (29) 

The coefficients L:, Mj, and Nj are more specific representations 
of the parameters given in Eqs. ( 2 1 ) - ( 2 4 ) ,  and are given in 
this case as 

1 4 
Lj = -~j (fHmj + fl:e:m 2 + fi3) (30) 

Mj = ~ (f2,m~ + f=ce:m] 4- f23) (31) 

Nj = ~ (];,m: + f3:gm~ + J~3) (32) 

where the determinant D~ is given by 

Dj = dtajm 5' + d2m¢ + d3cgm ~ + d4. (33) 

Using the constitutive equations in (1), the corresponding 

I C66 p 2  -Jr- C22 q 2  _ C 4 4 s 2  

q s  ( C23 4- C44 ) 

q s ( e 3 2  4- e24) 

- q s ( C 2 3  + C44) 
C55p 2 + C44q 2 --  C33 $2 

elsp 2 + e24q 2 -- e33 s2 
e~sp 2 + e24q 2 - e33 $2 

- e , l p  2 - e=q 2 + (:33 $2 (~ 

{ - pq (C l 2  4- C66)] 
= 8 ps(C13 -t- C55) ~ • 

ps(el5 + e31) J 
(21) 

General expressions for the constants V, W, and ~ can be con- 
structed as a function of the real, imaginary, or complex roots. 
These are 

V(s )  = f ' 's4 + flzs2 +f,3 (22) 
b(s)  

ffz(,~,) = s(A:4 + A:~ + A~) 
/}(s) (23) 

~o(s) = s ( ~ : 4  + f~zs2 + ¢33) (24) 
D(s) 

lS(s) = d :  6 + d2s 4 4- d3 $2 4- d4. (25) 

The constants d~ and f j  are given in Heyliger, Pei, and Ramirez 
(1993). 

The solutions for the elastic and electric field components 
corresponding to each type of root are developed separately 
below. 

Case 1: Real Roots for  r. Given n real roots for r, the 2n 
roots for s can be obtained using Eq. (19). These roots are 
either real or imaginary depending on the sign of r. Following 
the nomenclature used in Pagano (1970) and Heyliger and 
Brooks (1995), the solution for the displacement components 
and electrostatic potential corresponding to the these roots can 
in either case can be written as 

n n 

u(z)  : ~ Uj(z) V(z) = E LW~.(z) 
j--1 j=l  
n n 

W ( z )  = Y. MjWj(z) 49(z) = Y. NjWj(z) (26) 
j=l  .j-I 

where 

Uj=FjQ(z)  +Gj~(z)  

wj = c j G ( z )  + a : : j ( z ) .  (27) 

expressions for the stress and electric displacement can be com- 
puted as 

cri = sin px sin qy ~., - p C i t  - qCi2Lj 
./= I 

+ Ci3cej ~ (f2tm. 4 + f2zm~ozj + A3) 

+ e3io~/ ~ (f~tm 4 + f~zm~c~: + ~3) ]Uj(z )  (34) 

n 

rvz = sin px cos qy ~ [ C44 ( tjgtlj 4- qMj) + euNjq ]Wj( z ) (35) 
j=l  

n 

"rx~ = cospx sin qy ~. [C55(mj + pMj) + e24Njq]W)(z) (36) 
j=l  

n 

%y = cos px cos qy ~. C66(q q- pL:)Uj (37) 
j= l  "[ 

Di = s i n p x s i n q y  ~ -e31p - e32qLj 
j=l  

+ e330q ~ i  ( f i ,m: + f=m~cej + f23) 

] + e330/j " ' J  (f~lm~ + f32m~% + f33) Wj(z) 
"~ O j  " "" 

(38) 

Here i = 1, 2, 3 corresponds to x, y, and z for the stress and 
electric displacement components. 

A special case in which there are real roots for r is the 
nonpiezoelectric elastic layer. The ei: = 0 in this case and the 
elastic and electric fields uncouple. The elastic solution has 
been given by Pagano (t970),  and the results are not repeated 
here except to note that the elastic field behavior is represented 
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by six roots and six unknown constants within the layer. This 
corresponds to the six interface/boundary conditions (three dis- 
placements and the Criz stress components) for a single layer. 
The electrostatic behavior in this case is represented using the 
two roots 

= , , / c u p 2  + e2zq2 (39) 
nl,2 

V £33 

The potential and transverse electric displacement components 
in this case are given by 

2 
qb(x, y, z) = sin px sin qy ~ Bj exp(njz)  (40) 

j=J 
2 

D~ = -e33 sinpx sin qy ~ Bjnj exp(njz). (41) 
j=l 

Case 2: Complex Roots for  r. The elastic, electric, and 
geometric properties for some laminae yield complex roots. 
These occur in conjugate pairs, which result in the final roots 
for s in the form ±(a  ± ib), where i = ~-1  and a and b are 
positive constants. The solution for U(z)  in this case can be 
expressed as 

U(z)  = c~e "z cos bz + c2e az sin bz 

+ ¢3e -az COS bz + c4 e-az sin bz (42) 

where c~-Ca are real constants. Following some algebraic ma- 
nipulations and using Eqs. ( 2 1 ) - ( 2 4 ) ,  the solution for V(z )  
can be expressed as 

V(z )  = Qe"Z(F1 cos bz - ~1 sin bz) 

+ c2ea~(f2~ cos bz + F~ sin bz) 

+ c3e-aZ(Fl  COS bz + f~j sin bz) 

+ c4e -aZ( - -~  1 COS bz + F1 sin bz). (43) 

Here F1 = ~R[V(a + ib)] and fit = ~[V(a + ib)]. Similarly, 
the final expression for W ( z )  can be expressed as 

W ( z ) = cl ea~[ ( aF2 - b~a) cos bz + ( -bF2 - aft2) sin bz ] 

+ c2e~Z[(bF2 + aft2) cos bz + (aF2 - bf~2) sin bz] 

+ c3e-"Z[(bf2z - aF2) cos bz + ( - b F 2  - aft2) sin bz] 

+ c 4 e - q ( b F 2  + aft2) cos bz + ( - a F 2  + bf~2) sin bz] 

(44) 

where F2 = fft[l~l(a + ib)] and t22 = ~[l~,'(a + ib)]. The final 
expression for ~b can be obtained in similar fashion to yield 

q~( z ) = c l eaZ[ ( aF3 - b~23) cos bz + ( -bF3 - a~23) sin bz ] 

+ c2eaZ[(bF3 + a~3) cos bz + (aF3 - b~3) sin bz] 

+ c3e-"Z[(b~3 - aF3) cos bz + ( -bE3 - a~23) sin bz] 

+ c4e-aZ[(bF3 + aft3) cos bz + ( -a F 3  + b~23) sin bz] 

(45) 

where  F3 = ~ [ ~ ( a  + ib)] and F3 = ~ [ ~ ( a  + ib)]. 
The expressions for the stress and electric displacement com- 

ponents can be obtained by the appropriate differentiation and 
combination with the constitutive equations as given in Eq. ( 1 ). 
These expressions are omitted here for brevity. 

Solution for the Laminate. The elastic and electric field 
components within each layer are expressed in terms of eight 
unknown constants. These are determined using the interface 
and continuity conditions at the upper and lower surfaces of 
each lamina. For an elastic/dielectric layer, there are six con- 
stants corresponding to the elastic part of the solution and two 

Table 1 Elastic, piezoelectric, and dielectric properties of piezoelectric 
materials 

P r o p e r t y  P Z T - 4  P V D F  

C u  ( G P a )  238.0 139.0 

C22 23.6 139.0 

C33 10.6 115.0 

Ca2 3.98 77.8 

Ca3 2.19 74.3 

C23 1.92 74.3 

C44 2.15 25.6 

C55 4.4 25.6 

C66 6.43 30.6 

e24 ( C / m  2) -0.01 12.72 

e31 -0.13 -5.20 

e32 -0.14 -5.20 

e33 -0.28 ~ 15.08 

m_ 12.5 1475 
e0 
~zz 11.98 1475 
e0 

11.98 1300 
e0 

constants for the electrostatic solution. For most common piezo- 
electric materials, however, the roots fall into one of two catego- 
ries. For some piezoelectric materials with orthotropic behavior 
such as PVDF, the four roots for r are real. Correspondingly, 
there are eight constants (F~-F4 and Gi-G4 in Eq. (26)) that 
uniquely define the fields within the layer. For piezoelectric 
materials with transverse isotropy such as PZT-4, there are two 
real roots and two complex conjugate roots for r. Hence the 
eight constants are F,,  F2, G~, and G2 from Eq. (26) and 
c~ -c4 from Eqs. (43) - (46). Following the solution of the total 
system of equations for the constants, the solution for any com- 
ponent can be computed at any location within the laminate. 

3 Numerical Examples 
Several examples are considered in this section. A two-layer 

plate of dissimilar piezoelectric materials is studied first and 
compared with an approximate discrete-layer plate theory. In 
the second example, the influence of the piezoelectric coeffi- 
cients ekp is examined by studying a single layer of piezoelectric 
material. The third example considers the influence of an inter- 
nal electrode in a single piezoelectric layer. Finally, a three- 
layer square cross-ply of PVDF is considered. The material 
properties are listed for each material in Table 1. These are 
taken from Berlincourt and co-workers (1964) for the PZT-4 
and adapted from Tashiro and co-workers ( 1981 ) for the PVDF. 

Two.Layer Laminate of Dissimilar Piezoelectric Materi- 
als. We first consider a rectangular laminated plate composed 
of PZT-4 on the top and PVDF on the bottom. Both layers have 
the thickness fixed at 0.0025 m with Lx = 2Ly. The two aspect 
ratios of Lx/H = 4 and Lx/H = 10 were studied. For each 
geometry, two load cases are considered: an applied sinusoidal 
transverse load (qo = 1.0, m = n = 1 ) at the top surface with 
top and bottom surfaces held at zero potential and zero shear 
tractions, and an applied sinusoidal potential on the top surface 
with both top and bottom surfaces traction free. These are 
termed applied load case and applied potential case, respec- 
tively. 

The objective of this example is to provide representative 
values for the elastic and electric fields at specific locations in 
the laminate and to compare the results with the discrete-layer 
theory developed by Heyliger and co-workers (Heyliger, Pei, 
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Table 2 Comparison of exact and discrete-layer values for applied load case 

L~/H=4 L~/H=10 
Zt Zb zt  Zb 

Exact [ DL Exact ! DL Exact DL Exact 
U -6.2574e-14 
V 9.5134e-14 
W 2.8503e-13 
a .  -1.4347 
~u -.71755 
r.y .16785 
D. , [-1.7048e-l l  

DL 
-6.2554e-14 
9.5079e-14 
2.8496e-13 

-1.4303 
-.~1592 
.16740 

-1.7019e-l l  

3.5524e-14 
-9.6408e-14 
3.2885e-13 

3.2246 
4.4761 
-1.0649 

23.409e-ll 

3.5498e-14 
-9.6371e-14 
3.2879e-13 

3.2228 
4.4728 
-1.0638 

] 23.444e-11 

-8,7000e-13 
-1.1186e-12 
6.6004e-12 

13.142 
18.397 

-5,4961 
.20111e-9 

-8.6989e-13 
-1.1184e-12 
6.5996e-12 

13.140 
18.393 
-5.4949 

.20137e-9 

7.0679e-13 
2.0057e-12 
6.5167e-12 

-11.463 
-6.0339 
1.3814 

.82096e-ll 

7.0666e-13 
2.0053e-12 
6,5158e-12 

-11.457 
-6.0312 
1,3807 

.82092e-ll 

a, Values at top and bot tom surfaces. 

L . / H = 4  L . / H = l O  
Exact DL Exact DL 

¢ .11147e-2 .11154e-2 .011675 .011675 
a. .23228 .23183 .35705 .35681 
r** ,35629 .35664 1.1491 1.1501 
ry, .39776 .39877 1.3367 1.3385 

b. Values at mid-plane. 

and Ramirez 1993). A total of 64 layers of equal thickness are 
used to divide the thickness direction of the laminate. The re- 
sults for the applied load case are shown in Table 2, with those 
for the applied potential case shown in Table 3. The maximum 
values for the displacements, in-plane stresses, and normal elec- 
tric displacement components are given at the top and bottom 
of the laminate with the potential and transverse stresses given 
at the center of the laminate. The exact solution explicitly pro- 
vides the values at these locations. For the discrete-layer theory, 
the stresses and electric displacement are computed at the center 
of each discrete layer. Hence the values at the top and bottom 
are linearly extrapolated from the values at z = +0.0024609375. 
The values at the center of the plate are extrapolated from the 
two adjoining layers and then averaged. 

The results from the two formulations are in excellent agree- 
ment. Several of the effects of  thickness and the difference in 

material properties can be observed. For example, the transverse 
displacement W has a much wider variability for the thicker 
plate geometry, while the thinner plate yields a more constant 
distribution through the thickness. The potential also strongly 
depends on the aspect ratio of  the plate, with the thinner plate 
resulting in a much higher midplane potential for the applied 
potential case. 

Influence of e U. A square plate composed of  a single layer 
of  PZT-4 is considered next to study the effect of the piezoelec- 
tric coefficients on the resulting displacements and electrostatic 
potential. The total thickness is fixed at 0.025 m, with Lx = Ly 
= L. The aspect ratios of L/H = 4, 6, 10, 25, and 50 were 
considered. The influence of the ekp was sought through calcula- 
tion of the parameters /3k~, = (Odp/Oekp) for the case of the 
applied load and r/kp = (OW/Oekp) and ~p = (OU/Oekp) for the 
applied potential. 

Table 3 Comparison of exact and discrete-layer values for applied potential case 

Exact 
U -6.7845e-10 
V -1.3885e-10 
W -2.3409e-10 
a ,  -1941.7 
ay 74.713 

r~y -1319.6 
D. ,I -.46248e-5 

L . / H = 4  
zt  

DL 
-6.7811e-ll 
-1.3879e-10 
-2.3421e-10 

-1942.9 
72.161 
-1318.6 

-.46236e-5 

Exact 
-1.8380e-ll 
-4.5792e-14 
-1.6239e-13 

721.50 
325.25 
-83.379 

-.26329e-7 

Zb 

I DE 
-1.8386e-ll 
-4.5815e-ll 
-1.6249e-10 

720.03 
324.87 
-83.249 

I -.26322e-7 

Zt 

Exact [ 
-3.5347e-ll 
-7.6708e-ll 
-2.0111e-10 

-364.25 
89.578 
-283.40 

-.95036e-6 

Lx/H=10 

D:: 
-3,5334e-ll 
-7.6692e-ll 
-2,0120e-10 

-364.42 
89,292 
-283,31 

-.95032e-6 

Exact 
-1.6402e-ll 
-4.2402e-ll 
-2.0599e-10 

237.96 
95.501 
-30.384 

-.41175e-7 

Zb 

DL 
-1.6411e-ll 
-4.2429e-ll 
-2.0607e-10 

238.00 
95.551 

-30.392 
-.41174e-7 

a. Values at top and bottom surfaces. 

Lx /H=4  L ~ / H = t 0  
Exact DL '" Exact DL 

¢ 0,65943 0.65941 0,92243 0.92243 
a .  -66.387 -66.587 -3.7377 -3,7486 
rzz -40.090 -40.037 -6.9023 -6.9095 
ru. -45.704 -45.857 -4.5247 -4.5102 

b. Values at the mid-plane. 
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Tab le  4 
tent ia l  f ie lds  

UH 

4 

6 

10 

25 

50 

Inf luence of  p iezoe lec t r i c  coefficients on d i s p l a c e m e n t  and  po- 

kp 
31 33 15 

1 .036 .581 

1 .188 .236 

1 .256 .0820 

1 .285 0.0127 

1 .290 0.00318 

a. /3kp ( a p p l i e d  l oad  case) .  

L / H  kp 

31 33 15 

4 0.000935 0.514 1 

6 0.0415 0.432 1 

10 0.0637 0.389 1 

25 0.0743 0.368 1 

50 0.0758 0 . 3 6 5  1 

b. r/kp ( a p p l i e d  p o t e n t i a l  case) .  

L / H  kp 

31 33 15 

4 1 0.514 0.501 

6 1 0.577 0.256 

10 1 0.618 0.0997 

25 1 0.638 0.0166 

50 1 0.644 0.00417 

c. ffkp (a~pplied p o t e n t i a l  case) .  

The normalized absolute values of/3kp, ~Tkp, and ~,p are shown 
in Table 4 ( a ) - ( c ) .  Table 4 (a )  shows the influence of the 
three independent constants on the midplane potential for the 
applied load case, while Tables 4 ( b ) -  (c) show the analogous 
influence on U and W at the top surface of the plate the for the 
applied potential case. 

In the applied load case, the coefficient e3, plays the dominant 
role in generating the midplane potential, being over three times 
as influential as the other constants for relatively thin plates. 
As the plate becomes thick, the influence of el5 becomes larger 
in part because of the higher electric field component Ex. This 
influence lessens as the plate becomes thin, with the coefficient 
e33 still having a fairly large effect even for thin plates. 

For the applied potential case, the influence of the coefficient 
e15 dominates the transverse behavior, with rh5 being at least 
twice as high as for the other ~733 and 733. The coefficient e3~ 
has little influence for this purpose. In generating the displace- 
ment U, e31 is dominant, with e33 and e~5 being about half as 
influential for thick plates. As the plate becomes thin, the influ- 
ence of e~5 once again dissipates, with e33 maintaining its influ- 
ence. 

An Internal  Electrode. Piezoelectric elements or layers 
can act as actuators to generate a specific response of a solid. 
In this example, this type of situation is simulated. A potential 
is specified along the top surface of a piezoelectric layer, but 
in addition an internal electrode with a specified potential is 
specified within the thickness of the plate. A single square layer 

0.250 

0.125 

z 0.000 

-0.125 

, , , , , , , , , , , ,  , , , , , 
"0'250-0.3 -0,2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

W 

Fig. 1 T h r o u g h - t h i c k n e s s  t r a n s v e r s e  d i s p l a c e m e n t  for  s ingle  layer  wi th  
e m b e d d e d  e l e c t r o d e s  

of PZT-4 is studied, with the dimensions fixed at L = 0.02 m 
and H = 0.005 m. A sinusoidal potential of peak amplitude of 
one is applied to the upper surface, with the bottom surface 
fixed at zero potential. In addition, a surface simulating an 
internal electrode with zero total thickness is located within the 
plate and held at zero potential. The objective of this example 
is to study the effects of moving the electrode location and 
assess the nature of the through-thickness potential and trans- 
verse displacement distributions. 

The plate is modeled as two layers with thicknesses h, and 
h2, with the ratio h j / H  varied as 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 
and 1. The last case is a single layer with no internal electrode. 
For this specific case, the continuity and interface conditions 
must be modified at the location of the electrode. The six conti- 
nuity conditions on the displacement and stress components 
remain the same as before, but the two remaining conditions 
are now qbl (y ,  - h f l2  ) = ~b2(y, h i 2 )  = 0. The normal electric 
displacement component is no longer continuous across this 
interface. The resulting distributions for W and ff through the 
thickness are shown in Figs. 1 and 2, respectively. The values 
for W have been multiplied by 10 9 and those of z by 100. 

As the actuating layer becomes thin, the electric field in- 
creases and generally yields larger values of the transverse dis- 
placement as shown in Fig. 1. The break in the slope of W 
indicates the location of the electrode for all cases except the 

0.250 

0.125 

z 0.000 

-0.125 ~ 
-0.250 

0.00 0.25 0.50 0.75 1.00 

® 

Fig, 2 T h r o u g h - t h i c k n e s s  e l e c t r o s t a t i c  potent ia l  for  s ingle  layer  wi th  
e m b e d d e d  e l e c t r o d e s  
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Fig. 3(a) Displacement in x-direction 
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Fig. 3(b) Normal stress inx-direction 
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-1.5 -1.0 -0.5 0.0 1.5 2,0 2.5 0.5 1.0 

Oxz 

Fig. 3 (c )  Shear stress ~rx~ 

single layer. The transverse displacement varies much more 
strongly in the upper actuated layer than the lower layer. This 
is in part because of the e33 term and the fact that the electric 
field component Ez is much smaller in the lower layer. 

In the analysis of piezoelectric systems, it is often assumed 
that the transverse electric field is a constant within an actuating 
layer. Figure 2 shows that this assumption is valid even for 
relatively large actuating thicknesses. Even for h~/H = 1, the 
distribution is only slightly nonlinear. For this particular exam- 

0.050 , , o , , 

o t  s 

o t  s S 

, I  ~ s s  ~ 

0.025 ' ~ , - "  

z 0.000 ~ - -z-..,,~ ". 

-0.025 / " I "  

s t 

-0,050 I I 
-1.5 -1.0 -0.5 0.0 0.5 1,0 1.5 

Ovz 

Fig, 3 (d )  Shear stress o,y~ 
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Fig. 3(e) Electrostatic potential 

Fig. 3 Through-thickness distributions for cross-ply square plate 

ple, decreasing the actuating layer thickness results in larger 
potentials of the same sign within the lower layer. 

Cross-Ply of PVDF. A three-layer cross-ply square (L~ = 
Ly = L) plate with the stacking sequence [0 /90 /0]  is con- 
structed of PVDF. The total laminate thickness is fixed at 0.01 
m. Two lengths are considered: 0.04 m and 0.1 m. There are 
two conditions applied on the top surface: an applied sinusoi- 
dal transverse load and an applied sinusoidal surface potential. 
For the applied load, the top and bottom surfaces are grounded 
and the remaining surface tractions are zero. For the applied 
potential, only the bottom surface is grounded and both faces 
are traction-free. 

Cases l and 2 are defined as the applied load with L = 0.04 
m and L = 0.1 m, respectively. Cases 3 and 4 denote the applied 
potential case for L = 0.04 m and L = 0.1 m, respectively. The 
results are shown in Figure 3 ( a ) - ( e ) .  In all plots, the solid 
lines represent case 1, the dotted line case 2, the dashed line 
case 3, and the dot-dashed line case 4. To facilitate plots on 
the same graphs, the field distributions are scaled. The factors 
by which the distributions have been multiplied for cases (1, 
2, 3, 4)  are as follows: U (0.2, 0.02, 1, 1) × 10 ~2, cr~ (1, 0.2, 
0.5, 1 ), ~'x~ (2, 0.5, 10, 30), ~-~ ( 1, 1, 10, 20), and ~b (20000, 
5000, 1, 1 ). These are all plotted against the thickness coordi- 
nate z. All plots show the maximum field distributions for a 
given quantity. 

Increasing the L/H ratio has the effect of smoothing out the 
axial displacements as shown in Fig. 3 (a ) .  The results for the 
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applied load cases are similar to the behavior found for elastic 
laminates by Pagano (1970).  For the applied potential, the dis- 
placement field is significantly different and indicates that ap- 
proximations for these displacements in laminated piezoelectric 
plate theories need to be sufficiently variable to account for this 
type of behavior. 

Similar trends are observed for the stress distributions, with 
the increase in L/H resulting in less variability of the stresses 
within each layer. The shear stresses are self-equilibrating for 
cases 3 and 4, and balance the applied loading for cases 1 
and 2. The potential distribution becomes more linear as L/H 
increases in the applied potential case, but remains effectively 
parabolic for the case of the applied load. Both distributions 
are clearly affected by the relative values of the dielectric con- 
stants for each of the layers, which were nearly identical in this 
case. Again, approximate plate theories would need to be able 
to represent the different types of response depending on the 
loading condition if they are to accurately depict the actual 
fields within the laminate for a variety of conditions. 
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On the Nonaxisymmetric 
Loading of Nonhomogeneous 
Annular Plates of Variable 
Thickness 
In this paper, the stepped reduction method is used to find general solutions for  the 
nonaxisymmetric bending of  arbitrary axisymmetric nonhomogeneous annular plates 
of  variable thickness under an arbitrary nonaxisymmetric temperature field and an 
arbitrary nonaxisymmetric distributed load. In spite of  a large number of  steps, 
eventually only two simultaneous algebraic linear equations with two unknowns have 
to be solved. As an example, the bending of  a circular plate, whose solution is known, 
is carried out by the proposed approach, and it is shown that results obtained by the 
proposed method compare well with previous solutions obtained by other methods 
and hence prove the accuracy of  the proposed method. 

1 I n t r o d u c t i o n  
Using a sufficient number of steps, any arbitrary nonhomoge- 

neous annular plate of continuously varying thickness, subjected 
to arbitrary and not necessarily axisymmetric bending due to 
transverse loads and temperature variations can be treated by 
reducing it into a stepped one. The solution of such a problem 
is, however, not easy, as it requires the solution of  simultaneous 
linear equations with many unknowns. Using the new method 
suggested by Yeh (see Yeh and Hsu, 1979a), we readily over- 
come these difficulties. In spite of an initially large number of 
steps, the problem eventually reduces to the solution of  a set 
of two simultaneous linear algebraic equations with two un- 
knowns. As an example, the bending of a circular plate of 
continuously varying thickness, whose solution is known, is 
studied. Results, obtained with our method, compare well with 
previous ones (see Picher, 1928; Yeh, 1955) obtained by differ- 
ent methods and thus prove the accuracy of the new approach. 

2 G e n e r a l  So lu t ion  o f  a B e n d i n g  P r o b l e m  

Consider a nonhomogeneous, variable thickness plate as 
shown in Fig. 1, whose outer radius is a,  inner radius b, and 
the distribution of flexural rigidity D is as shown in the figure, 
we choose polar coordinates ( r ,  0) and the center of the plate 
at origin. First we discretise the continuous distribution curve 
of D by a stepped one (see Fig. 1). The value of D for each 
step is defined as the following: 

Do = D(b)  when b -< r < ~, 

Di = D ( ~ i )  when ~i -<  r < ~ 2  

Di = D(~i )  when (i -< r < ~i+l 

D,, = D ( { , )  when ~,, "< r --< a. (2.1) 

C o n t r i b u t e d  b y  the  A p p l i e d  M e c h a n i c s  D i v i s i o n  o f  TrIE AMERICAN SOCIETY 
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This plate is subjected to the four load types: 

1 arbitrarily distributed transverse load q(r,  O) with the fol- 
lowing properties: 

q(r,  O) = q(r,  O) when r - >  c ]  
(2.2) 

= 0 when r < c 

2 circular arbitrarily linearly distributed moment per unit 
length M(O), the radius of the circle being d, 

3 circular arbitrarily linearly distributed force per unit length 
Q(O), the radius of the circle being f ,  and 

4 arbitrarily distributed temperature field O(r ,  0). 

The annular plate and the loads applied to it after this simpli- 
fication are shown in Fig. 2, where c -> {c, d - {d, f >- {l and 
{c, ~d, ~: are the radii of  the steps adjacent to c, d, f .  

In order to change the fundamental equations, (Yeh and Hsu, 
1979a; Yeh and Hsu, 1979b; Timoshenko, 1959; Yeh and Han, 
1994) into dimensionless form, we introduce the following di- 
mensionless quantities: 

W w r c d f 
= - - ,  X = -  , O~c = -  , Old = - -  , O~: = -  

a a a a a 

,6', = - ,  ,0. = - ,  ,0,  = - ,  /~: = -  
a a a a 

p = qa3/Do, M* = Ma/Do, Q* = Qa2/Do, 

b 
ce = - ,  M-r = aM,/Do, V,. = a2Vr/Do, Qr = a2Q,./Do 

a 

Qo = a2Qe/Do, l~re = aMro/Do, l~o = aMo/Do, T = aO 

(2.3) 

where w is the deflection; Mr is the radial bending moment per 
unit length; Mo is the circumferential bending moment per unit 
length; M,.o is the twist moment per unit length; D(r)  = 
E(r)h(r )3 / (12(1  - u2)) is the flexural rigidity of the plate; 
E(r)  is Young's  modulus; u is Possion's ratio; h(r)  is the 
thickness of the plate; t is the temperature; O = a*Mt, hi = 1 
- u, M = 1 + u; c~* is the coefficient of linear thermal expan- 
sion; Vr is the radial reactive force per unit length; Qr is the 
radial shearing force per unit length; and Qo is the circumferen- 
tial sheafing force per unit length. The problem of bending of 
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Fig. 1 
rigidity 

_b J /  
~.  ~ rt--~l l  ~ 

Dimensions of the annular plate and discrete curve of flexural 

the above-mentioned simplified annular plate is changed into 
the following boundary value problem, whose fundamental 
equation is 

V2V2W = {x - ~ } 0 p  

n 

x [6~+ ~ { x - f l ~ } ° ( 5 ~  _ 6~_~)]-  VaT (2.4) 
i=c+! 

where { x - ~c } o, { x - fli } o are Heaviside functions, whose 
definition is 

{ x -  c~} ° =  1, when x -~  c~,~ 
(2.5) f 

= 0 ,  when c~ < c~cj 

02 1 0 1 02 
V z = - - + -  + - - - -  (2.6) 

Ox ~ x~x  x 2 O0 ~ 

~ = Do/Di, 50 = 1, 6~. = Do/D(~c). (2.7) 

Relations between reduced deflection, temperature, and reduced 
bending moment, shearing force, twisting moment, and reaction 
force are 

02 W ) 
Mr = - k , ( x )  hi Ox------ 7- + uVzW + T (2.8a) 

Mo = k.(x) -07x V~W - X~ Ox 2 ] (2.8b) 

0 
Or = - k , ( x )  ~x (V2W + T) (2.8c) 

Qo = k . ( x ) ~ O ( V 2 W +  T) (2.8d) 

o ( l  o w ~  
g,,.o = k.(x)X, ~x \ ; - g g /  (2.8~) 

[ 0 ~1 O ( ! 0 2 w ~ l  
g = - k , ( x )  ~ ( V = W + r ) + ~ 7 ~ x \ x  00 = ] j  (2.S f )  

where 

k,,(x) = 1 + Y, { x -  t5i}° Di Di-, . (2.9) 
,=1 Do Do / 

The following continuity conditions should be satisfied at each 
step junction: 

w ( f l ,  - ~) = w(Z,) OW(Z,  - e)  Ow(z,____2 ] 
Ox Ox 

Mr(t~i -- ~) = Mr(]~i) 9r(]~ i - e) = I7r(/3i) ( 2 . 1 0 )  

(i = 1 ,2  . . . . .  n)  

where e is an infinitesimal quantity. 
Boundary conditions usually are represented by the following 

three cases, taking the edge x = a (or x = 1 ) as an example: 

1 Fixed edge 

OW 
W =  0, = 0 as x = c ~ ( o r x =  1) (2.11) 

Ox 

2 Simply supported edge 

W = 0 ,  ~14,.=0 as x = c e ( o r x =  1) (2.12) 

3 Free edge 

Mr = 0 ,  V , . = 0  as x = a ( o r x =  1) (2.13) 

Now we treat the boundary value problem: under boundary 
conditions (2.11 ) - (2.13 ) and continuity conditions (2.10), we 
have to solve Eq. (2.4). First, we expand p(x ,  0), T(x,  0), 
M*(O), Q*(O) into Fourier series 

A(x ,  O) = Y. Am(x) cos mO + ~ ~, ,(x)  sin mO (2.14) 
m-O m= 1 

Fig. 2 

=~----'gd----=- 

~n 

Discrete dimensions of the annular plate and its loads 
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where 

A(x,  0) = (p(x .  0). T(x.  0). M*(O). Q*(O)) 

1[] 
(Po, To, Mo, Qo) = ~ (p,  T, M*,  Q*)  dO 

1 f2~ 
(Pro, Tin, Mm, Qm) = ~ do (p'  T, M*, Q*) cos mOdO 

1 f ~  
(Fro, Tin, M.,,  Qm) = ~ do (p'  T, M*,  Q*)  sin mOdO 

Then we put W, M .  Vr into the following form: 

B = ~ Bm(x) cos mO + ~ l~.,(x) sin mO 
m = O  m ~ O  

where 

(2.15) 

(2.16) 

B = (W,/fir, ~,.) 

Bm = (Wm(X), Mm(x),  Vm(x)) (2.17) 

B,,, = ( $ m ( X ) ,  ~ , , , ( X ) ,  E , , (X) )  

Substituting Eqs. (2.14) and (2.16) into (2.4), and using 
continuity conditions (2.10) and boundary conditions (2,11 ) - 
(2.13) for W,,, (m = 0, 1, 2 . . . .  ), we have the following bound- 
ary value problem: 

2 2 AmA,,,W,,, = {x  -- o~c}°p,,, 
m 

× [6~.+ ~ { x - , 6 , } ° ( 6 /  - 6 i - ~ ) ] - A m T , , ,  
, = c + l  

d ~ 1 d m 2 A,2,, = - -  + 
dx ~ x dx x ~ " 

where 

(2.18) 

(2.19) 

Continuity conditions corresponding to (2.10a, b) are 

dW,,,(/3, - e) dW,,,(13i ) 

dx dx 
- - ,  (2.20) 

V,.,,.(,6~ - ~ ) 

W . , ( , 6 ,  - ~ ) = W . , ( , 6 ,  ) ,  

M , , . ( , 6 i  - e )  = M ~ . , ( , 6 , ) ,  

( i =  1 ,2 ,3  . . . . .  n) (2.21) 

where 

M,m = -k , , ( x )  h~ dx------ U + uA],W,,, + r,,, 

(2.22) 

Boundary conditions corresponding to (2.11 ) -  (2.13 ) are 

1 Fixed edge 

HW,, 
W , , = O ,  - - = 0 ,  as x = a ( o r x =  l )  (2.23) 

dx 

2 Simply supported edge 

W,, = O, M~m = 0, as x = a (orx  = l)  (2.24) 

3 Free edge 

M. , ,=0 ,  V . . = 0 ,  as x = a ( o r x =  1). (2.25) 

For ~.,, we have a similar boundary value problem, only 

changing W,,,, Pro, T,,,, M,,.,, V..  into 1~'.,, ft.,, 7",,,, ~ . , ,  ~/ .... as 
well as Mm, Qm into M.,, Qm in Eq. (2.18), continuity conditions 
(2.20), (2.21) and boundary conditions (2.23)-(2.25) ,  with 
m *: 0. Solutions of W., and W,. are the same but different 
constants are to be determined. In the following we only discuss 
how to solve W,. and do not take into account ~,,,. 

According to Yeh and Hsu (see Yeh and Hsu, 1979a; Yeh 
and Hsu, 1979b), it is not difficult to find the solutions of Win. 

Win(x) = W , . ( a ) { f  lm)(x, a )  
n 

+ ~ {x - ~i }° f~ ,~ f~") (X ,  ,6i) 
/=1 

+ i {x - ,6i }°gl,li)fc4"°(x,/3/)} 
i=1 

+ ~dW"(a) ~J~ ~ ~.,~:~.,. a)  
dx 

+ ~ { x -  , 6 i } ° f ~ ) f  ~''):," 
i = l  

+ i { x - , 6 ,  ~° ( 2 ~ ( " ) ~  I g , , , i j4  ~.-~., ,6,)} 
/=1 

+ M~. , (a){ f~">(x ,  a )  + i {x  - ,6, } ° f [ ,~ ) f~ ' ) ( x ,  ,6,) 
i=1 

+ i { x -  /3i ~o.(3)¢ (,,o:~ l ~;m, J 4 \ ~ ,  
,=1 

+ V,.,.(a){f~4"°(x, a )  + i 
/=1 

n 

+ ~ {x - ,6, ~o°~.~. ~.,,>.~ l ~ m i  J 4 k ~ ,  

i=1 

+ {x - aa}°6dm,,,f~m)(x, ad) 

+ i {x ,6/ o ~5> ~,,.~r~ - } 6dM.,f  ,,. f 3 ~.~, /3~) 
/ = d + l  

j ~ , t  . . . . . .  g mi J 4 \.*~, ,6 i  ) 
i = d +  1 

- {X - af}°6fQ,,,f,~m)(x, ad) 
ii 

Z {x ,6 o ~6~ - - } 6fQmf mi f 30")(X, ,6/ ) 
i=f+ I 

-- ~ {X -- , 6 i  l o s  /"1 __(6)~ ~ s ~ . , ~ , , .  J ~"~(x,  ,6, ) 
i=f+ l 

+ { x -  a~}°W,*(x) + ~ {x- ,6i}°fc .~)f~"°(x, ,6 , )  
i = c  + I 

n 

_ ~0_~7~¢ ** + Y. {x ,6/. ~ , , , ~ " ~ ( x . , 6 / ) - W  (x) 
i = e + l  

tl 

_ ~ 0 e < ~ ) e ~ . , ~ ( x  ' Z,) + E {x ,6, . . . . . .  , ~  

SmiJ4 t.~,,6i). (2.26) 
i=1 

In expression (2.26), f ["°(x, y) (i = 1, 2, 3, 4) and their 
derived formulae I f  }")(x, y)]°~ ( j  = I, II,  III) are complicated 
expressions not presented here. 

A s m =  0, 

fo(~ .(I) . ( 2 )  . ( 3 )  . ( 5 )  p ( 8 )  O.  (2.27) = /~Oi = ~Oi  "~ ~Oi  = ~Oi  = o u ,  

,6,)} 

{ x - ,0, } o f  ~4)f ~")(x,  ,6i ) 

,6,)} 
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A s m =  1, 

I f  ~ f X d x f  ~ f~  W *(x)  = - xdx - -  xdx Pl 
X ~ oQ. X a c a c 

× [5. + ~ {x - /3i}°(6~ - 5~_~)]dx (2 .28)  
i=c + I 

'L fl W ~ * ( x )  = ~ xdx Tldx.  (2 .29)  

A s m  = 0 a n d r e  > 1, 

; Y; f, f; W ~ ( x )  = X m x d x  x2m+ld x ~ d x  x m + ~  

o pz;r c °~c ot c cq 

n 

X pm[6~ + ~ { X - - / 3 i } 0 ( 6 i - -  5i l)]dx (2.30) 
c+l 

c ~ c ~ -  ~ % X 2 m + l r m d x .  ( 2 . 3 1 )  

In expression (2 .26) ,  constants to be determined are found 
by continuity condition (2 .21)  as follows: 

.~ ( m ) ( l ~  e (k) [ .ff f(m~ ) { [ f *  '.~'i,J,,¢ ta~m)(/3i. /32)(")(/3i, /3J)](")}Oi 

g(~) (re)tea e (~)tr(3m)(/3i ' /3fl](m) 

(m) /3 ) ] ' )  } O, + gmj [f4(/3i, j (k = 1, 2, 3, 4) ;  
i - I  

£ (5) (m) = { [ f 3  (/3i, ad)]  (H)+ Z f(5)r¢(m):amj tg  3 ~,Pi, /3j)](,I) j mt 
j=d+ l  

i-1 

+ Z ~,,,~°(~)~i")(~,~ , ~91(")}4  ', 
j=d+l  

i--I 
g(5) (,,,)rn ( 5 ) . ~  (m){l~q /3.)](1 '1)  ,,,i { [ f  aa)] (m) + Z = f.,~ [J3  ',~i 

j=d+l  

i - I  

gmj t J 4  k / a i ,  / 3 j ) ] ( /H)}  

j + l  

( i = d +  1, d + 2 ,  d + 3  . . . . .  n)  
i -1  

f @  = { r,c ('"):a .... t J 4  Vt-'i, Olf)] (H) + Z f }~)[ f~m)( /3 i ,  /3j)(U) 
j= f+ l  

i-1 

+ Z g~6)[f(4m)(/3i, / 3 j ) ] ( " ) } [ / l i  

j=f+ ~ 
i - I  

g~) = { [ f  4(m)(/3i, Olf ) ] ( " )  ._~ ~ f (6)r  r (m)r  t j  3 t.~i, /31) ](m) 
j =f+ I 

i--I 
+ ~ ( 6 ) r #  ( . t ) ( ~  gin) t J 4  v ~ ' i ,  / 3 j ) ] ( ' ) } [ / ] i  

j =f+ 1 

( i =  f +  1, f +  2, f +  3 . . . . .  n) .  (2 .32)  

A s m = 0 a n d m >  1, 

re, dx 
f ~) = - m ( m  - 1)~kl/37 ' - 2  j a  c X~'~'~,  

~ X  f X d X £ X x m + l p m  
X Y 2m+ ~ dx X2m+------- 7 

a¢ a c ot c 

i -1  

x [~  + Z {x - /3 j }°(6,  - & , ) l d x  
j=c+ l  

f . x c  
+ x2,,,+ I dx x 27"+1 J. xm+ lp,,, 

e% et c a c 

i - I  

x [6; + Z {x - / 3 j } ° (  6 - 6 - 1 ) ] d x  
j =c+ I 

Y f fi~ dx xm + 
- / 3~  °c ~ ,~,. ~P" 

i 1 

x [£c + Z {x  - / 3 : } ° ( e j  - ej_,ldx 
j=c+l  

i - I  

+ Z f[~)[f~m)(/3i,  /3j)(m 
j=c+ l  

il }0 + y ,  ~ (7 ) r  ¢ i ~,,o tJ ~")(fi~,/3j)](") 
j=c+ l  

g~7) = m2(m - 1)M/37' 3 -,. x 2''+1 

f f × x2m+ld x dx f~ xm + 
2m+ I oQ ~c X J° 'c  I Pm 

i 1 

× [5c + Y~ {x - /3~}°(5j - 6j_,)ldx 
j c+l 

r y, ; m2kl ei x dx xm + 
+ ~/+3 < x2m+ldx .,x27,,+t ~,: 1Pro 

i--I 

x [¢. + Z (x - gl°(~sj  - ~j_,)]dx 
j =c-I- I 

Y, ; ~ dx x,.+ 
- mfi~- '  ., ~5777 <. IP m 

i 1 

x [~c + Z {x - / 3 j } ° ( s j  - ~j ,)]dx 
j=c+l  

1 fZ~ i -  1 
] ~ ; n + l  xm+'P"[~Sc + y" {X -- /3j}0((5: -- 6j_~)]dx 

c% j=c+ l  

i 1 

+ ~ f } ,~ ) [ f ( " ) ra  3 ~ , , / 3 s b j l ]  (m) 
j=c+ l  

+ 2 f ,(,7) ~(7)r ,c ~,,j t./ ~')(/3,, /3j)](") O, 
j=c+ l  j=c+ l  

( i = c +  1, c + 2 ,  c + 3  . . . . .  n)  

f(.8,i) = m ( m  - 1)X1/3~ "-z x2,,,+l d" 

/37,+a xm+lTm dx + . . . .  v t J 3  t~ i , / 3 j ) ]un  
~ a  j = l  

i - I  ) 
(8)1- ¢ ( m ) ( N  gmj I_J 4 \tt-*i, t~ j ) ]  (11) (]li + 

j = l  

f [ i  & f~ g},8) = _mZ(m _ 1)kd3~-3 x2"+l .J~ xm+lT.,dx 

m2kl . i~  i - I  L J 3  kt--'i, / 3 j ) ] ( , l l )  /3m+3 xm+'TmdX + Z f } ' ~  )~O') : f4  
~0¢ j = l  

,1 } 
+ ~ (8)[f  g,,,j L. 4(m)(/3,, fl:)](") O,' 

j = l  

(2 .33)  
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A s m =  1, 

{- f: f{iT) = fli ~.. xdx ~.Pl 

i - - 1  

X [~5c + Z {X -- /Sj}°(6j  -- ~Sj-l)ldx 
j = c +  l 

+ - -  xdx Pl 
~Oi a, X da,, a,. 

i - I  

X [6c + Z {X -- /~j i0(~j  _ ~ j - l ) l d x  
j = c + l  

2k, f a ,  f x  d x f X  f x  3~ xdx xdx p115. 
a c J o t  c X ot c a c 

i - 1  i - 1  

+ Y~ {X -- /~j}O(6j -- 5s_,)]dx + ~ f }7) 
j = c + l  j = c + l  

X [ f  ~')(/3i, ~ j ) ] ( / / )  "JV 2 ~(7) [~e  (1)( /~  ~/i 81j t a 4  V/Ji, ,-s.~ (11) 
j = c + l  

j = c + l  

+ / ~  p,[& + Z {x - N}°(sj - ~j_,)l& 
°to °tc j = c + l  

x~ I'~, dx x& p, 
+~Jo~ x . . . . . .  

i - 1  

x [~  + Z {x - /~}o(~j  _ ~j_,)]dx 
j = c + l  

~ xdx - -  xdx p, 
c a c X cQ o~ c 

i - I  i - 1  

× [5~ + Z { x -  / 3 j I ° ( 6 j -  5j_,)ldx + Z f i ]  ) 
j = c + l  j = c + l  

(1)/fi~. _ "~ (1I) i -1  
X [ f 3  ttr--,,flj)l + Z g~J)[f4( l)( f l i , f i j )]  (n) Ifii 

J j = c + l  

( i = c +  1, c + 2 ,  c + 3  . . . . .  n) 

f } ~ ) =  [ ~ -  /3--~ r,  dx + E f }~ ) 
a j = l  

i -1  t X [ f ~ l ) ( / ~ i ,  flj)](H) + y~ g~8)[f(4,)(3i,/3S)](.) ~O i 
j = l  

k, f& 2k, ~ xdx Ttdx + X f I~ ) 
j=l 

" ) × [ f  ~1)(/3i '/3j)](m) + ~. g~8}[f 4(,)(/31,/3j)l(m) $, 
j = l  

(2.34) 

where 

~Oi = (Di_, - Di)/Di. (2.35) 

3 Example 
Let us study an example to explain the calculation procedure 

and examine the exactness of our method. Assume the thickness 
of a circular plate varies according to the relationship h = 
hoe-(13/6>/(r/a)2 where ho is the thickness at the center of the plate, 

/3 is an arbitrary parameter (here we put/3 = 2) and the edge 
of the plate is fixed. The plate is subjected to a uniformly 
distributed load q. The central deflection Wm,~ and the edge 
radial stress a,.(a) (see Fig. 3) are to be determined. 

Picher (1928) and Yeh (1955) have investigated this continu- 
ously variable thickness circular plate problem by different 
methods. Yeh was the first to discretize the continuously vari- 
able thickness circular plate into stepped thicknesses, either 
circumscribed or inscribed, and called one case A and the other 
case B (see Fig. 3). The bending is symmetrical, therefore m 
= 0. Putting m = 0, a = 0, n = 9 and u = 0.3 in Eqs. (2.26), 
boundary conditions (2.23) at x = 1, (2.27), (2.33) and (2.34) 
we obtain, 

in case A, 

M,~(0) = 0.15952po, W ( 0 )  = W ..... = 0.02370p0. 

Notice that 

Wm~ w ..... a3q Eh~ = - - ,  po = - - ,  Do 
a Do 12(1 - u 2) 

Substituting into the above expression, we obtain 

w .... = 0.04740 6a4(1 - v 2) 
Eh~ q 

while the exact solution (see Picher, 1928; Yeh, 1955) gives 

w ..... = 0.0505 6a4(1 - vA) 
Eh~ q" 

Thus, the error is 

0.0505 - 0.04740 
= 6.14 percent. 

0.0505 

giving 

In case B, 

M~(0)  = 0.16810po, W(0)  = 0.02567po 

Eh~e o.ol 
Do - 12(1 - u 2) 

w .... = 0.05186 6a4(1 - u2) 
Eh~ q 

and an error of 

0.0505 - 0.05186 

0.0505 
= - 2 . 7 0  percent. 

Taking the average value of the results in cases A and B, we 
obtain 

w .... = 0.04963 6a4(1 - u2) 
Eh~ q 

l l l l l l l l i l l l i i l l l l l l i l l l l lq 
I 
i 

i 

Fig. 3 Continuously variable thickness plate of the example 
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and an error of 

0.0505 - 0.04963 
= 1.72 percent. 

0.0505 

Now let us to find out the edge radial stress ¢Tr(a). From Eq. 
(2.22a), we obtain the expression for M,o(1). Then from the 
numerical data, we can compute the value of M~o(1 ) and the 
results obtained may be written in the form 

D9 qa 3 
M,o(I) = o i ' - - - -  

Do Do 

3qa 2 
err(a) = "Y h~ 

Comparing the above two expressions, we have 

y = 2 h-2a'. 
ho 

For case A, we have 

3' = -7-2e °27cd = ¥0.3841, 

with an error of 

0.4125 - 0.3841 
= 6.89 percent. 

0.4125 

For case B, we have 

3' = - ¥ 2 e - ° 3 3 a  ' = -7-0.4223 

with an error of 

0.4125 - 0.4223 
= -2.37 percent. 

0.4125 

Taking the average of both cases, we obtain 

3' = ¥0.4032 

and an error of 

0.4125 - 0.4032 
= 2.25 percent. 

0.4125 

For other examples on structural optimization by the ap- 
proach presented in this paper, the reader is referred to Yeh 
(1988); Yeh, Yu, and Liu (1987); Yu and Yeh (1987); and 
Yu and Yeh (1988). 

5 Conclusion 
For a stepwise nonhomogeneous variable thickness plate, so- 

lutions obtained by the stepped reduction method are exact 
solutions. 

In solving the problem of a continuous nonhomogeneous 
variable thickness plate by changing it into a stepped nonhomo- 
geneous variable thickness plate (discretization), from the pres- 
ent example, we see that results obtained by the present method 
are accurate enough even for only n = 9, and it is very easy to 
estimate the error by computing the upper and lower bounds of 

the solutions. Therefore, the method can be extended to other 
kinds of nonhomogeneous variable thickness structural prob- 
lems. 

From the above example, we also see that unlike the conven- 
tional method of discretization which results in a system of 
algebraic equations and thus requiring a numerical approach 
for solution, this technique produces only a single algebraic 
equation, regardless of the number of discrete annular plates 
used in the model. This is achieved by expressing the continuity 
conditions between any two annular plates in terms of the 
boundary conditions for the overall problem using the Heaviside 
function, and this is done successively for all junctions. The 
main advantage of the stepped reduction method is that it per- 
mits an analytical formulation for handling the problem of non- 
homogeneity and variable thickness in annular plates. The accu- 
racy of using this procedure depends on the discretization 
scheme used: as the number of annular plates increases to infin- 
ity, the discretized plates tend towards the continuous plate and 
the approximate solution approaches the exact solution. 

The small parameter method, used by Yeh (1955) still has 
a certain superiority, so it can be used together with the present 
method. 

If we want to increase the accuracy in the present example, 
we can increase the number of steps. There is no difficulty in 
principle, only an increase in the labour of computation. 

The convergence conditions of the present method were dis- 
cussed by Ji (1988). 

This method has solutions in analytic form, so it can be 
used for inverse problems (see Yeh (1989) and Yeh and Han 
(1994)), such as structural optimization, flexible robotics, etc. 

References 
Ji, Zhen-yi, 1988, "The convergent condition and united formula of step reduc- 

tion method," Applied Mathematics and Mechanics (English ed.), Vol. 9, No. 
12, pp. 1183-1193. 

Edited by Olszak, W., ed., 1959, Non-Homogeneity in Elasticity and Plasticity, 
Proceedings of the L U.T.A.M. Sumposium, Pergamon Press, New York. 

Picher, O., t 928, "Die Biegung kreissymmetrischer Platten yon veranderlicher 
Dicke," Dissertation, Berlin, Germany, (also refer to Timoshenko, S., 1959). 

Timoshenko, S., 1959, Theory of Plates and Shells, McGraw-Hill, New York, 
pp. 257-260. 

Yeh, Kai-yuan, 1955, "Bending of a thin elastic plate of variable thickness," 
Acta Physica Sinica, Vol. 11, No. 3, pp. 15-32. 

Yeh, Kai-yuan, 1988, "Recent investigation of structural optimization by ana- 
lytic method," Structural Optimization, G. I. N. Rozvauy and B. L. Karihaloo, 
eds., Kluwer Academic Publishers, pp. 379-386. 

Yeh, Kai-yuan, and Hsu, Chin-yun, 1979a, "General solutions on certain prob- 
lems of elasticity with non-homogeneity and variable thickness 1. Elastic and 
plastic stress analyses of high speed rotating disc with non-homogeneity and 
variable thickness under non-homogeneous steady temperature field," Journal 03" 
Lanzhou University (Natural Sciences), Special Number of Mechanics, No. 1, 
pp. 60-74. 

Yeh, Kai-yuan, and Hsu, Chin-yun, 1979b, "General solutions of bending of 
ring-shaped elastic thin plates under arbitrary transverse loads and several prob- 
lems," Journal of Lanzhou University (Natural Sciences), Special Number of 
Mechanics, No. 1, pp. 202-225. 

Yeh, Kai-yuan, and Han, R. P. S., 1994, "Thermoelastic Analysis of High- 
Speed Rotating Disks With Variable Thickness and Inhomogeneity," ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 61, pp. 186-191. 

Yu, Huan-ran, and Yeh, Kai-yuan, 1987, "Optimal design of minmax deflection 
of an annual plate," International Conference on Optimization: Technique and 
Applications, Singapore, pp. 1087-1095. 

Yu, Huan-ran, and Yeh, Kai-yuan, 1988, "Optimal design of minmax deflection 
of an annual Plate," Applied Mathematics and Mechanics, (English ed.), Vol. 9, 
No. 1, pp. 13-18. 

312 / Vol. 64, JUNE 1997 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



K. Tuncay 1 

M. Y. Corapcioglu 

Department of Civil Engineering, 
Texas A&M University, 

College Station, TX 77843-3136 

Wave Propagation in Poroelastic 
Media Saturated by Two Fluids 
A theory of  wave propagation in isotropic poroelastic media saturated by two immisci- 
ble Newtonian fluids is presented. The macroscopic constitutive relations, and mass 
and momentum balance equations are obtained by volume averaging the microscale 
balance and constitutive equations and assuming small deformations. Momentum 
transfer terms are expressed in terms of  intrinsic and relative permeabilities assuming 
the validity of  Darcy's law. The coefficients of  macroscopic constitutive relations are 
expressed in terms of  measurable quantities in a novel way. The theory demonstrates 
the existence of  three compressional and one rotational wave. The third compressional 
wave is associated with the pressure difference between the fluid phase and dependent 
on the slope of  the capillary pressure-saturation relation. 

Introduction 
Dynamics of porous media is of interest in various diversified 

areas of science and engineering. This phenomena has been 
studied extensively in soil mechanics, seismology, acoustics, 
earthquake engineering, geophysics, and many other disciplines. 
The importance of the inertial effects, which cause wave propa- 
gation, were shown by Zienkiewicz et al. (1980) and Bowen 
and Lockett (1983). Although wave propagation in porous me- 
dia has been studied for quite some time, Biot's ( 1956a, 1956b) 
work appears to be the first one employing the fundamentals 
of transport phenomena in porous media. Biot's theory is an 
extension of a consolidation theory developed earlier (Biot, 
1941 ). Although the theory is developed in a heuristic manner, 
it is well accepted and still forms a base for wave propagation 
in porous media. The theory predicts an additional compres- 
sional wave which was first confirmed experimentally by Plona 
(1980) (also see Berryman, 1980). Because of its highly dissi- 
pative behavior, this wave is very difficult to observe but con- 
tributes the energy losses which effect the characteristics of 
other types of body waves. The physical interpretations of the 
elastic constants in Biot's theory were given by Biot and Willis 
(1957). Fatt (1959) calculated Biot's constants for sandstone. 
The elastic coefficients were also studied by Geertsma and 
Smith ( 1961 ), Berryman ( 1981, 1986), and Pride et al. (1992). 

Mixture theory has been used extensively in the formulation 
of wave propagation in porous media. In this approach, phases 
are viewed as overlapping media simultaneously existing every- 
where and occupying the whole space. The theory does not 
require the description of the pore structure. Disadvantage of 
this theory is the lack of information about the interaction terms. 
Hence, even if the pore structure can be described, there is no 
systematic way to obtain the interaction terms. There is a vast 
literature on the use of mixture theory among which one can 
note; Drumheller (1978), Jenkins (1980), Katsube and Carroll 
(1987), Garg et al. (1971, 1975, 1986), Ben'yman (1986), 
Prevost (1980), and Santos ( 1990a, 1990b). An extensive liter- 
ature survey is given by Bowen (1976) and Bedford and Drum- 
heller (1983). 
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Another approach of formulating multiphase equations is the 
use of the volume-averaging technique. Mass and momentum 
balance equations as well as the constitutive relations are ob- 
tained by volume averaging the equations and relations ex- 
pressed at the microscopic scale. The volume-averaging tech- 
nique has been employed after the development of the theorem 
for volume average of a gradient (Slattery, 1967; Anderson and 
Jackson, 1967; Marle, 1967; Whitaker, 1967). Although the 
volume-averaging technique has been used extensively to for- 
mulate the flow problems in rigid porous media (Slattery, 1967, 
1968; Whitaker, 1967), it has been recently applied to de- 
formable media (e.g., Bear et al., 1984). De la Cruz and Spanos 
( 1985 ) made the first attempt to formulate the constitutive rela- 
tions and balance equations of wave propagation in saturated 
porous media. In a subsequent paper, de la Cruz and Spanos 
(1989) extended their theory to include the thermodynamic 
considerations. Pride et al. (1992) obtained Biot's (1941, 
1956a) equations for saturated porous media by employing the 
volume-averaging technique. The resulting constitutive rela- 
tions of Pride et al. (1992) contained the same parameters as 
of Biot and Willis (1957). 

An alternative derivation to the volume averaging technique 
is the two-space method. In this approach, the unknown field 
quantities are considered to be functions of two sets of space 
variables. This extends the definitions of the field quantities 
from a three to six-dimensional space. These two sets are related 
by the ratio of the characteristic length of the microscale to the 
characteristic length of macroscale. The two-space method was 
first developed and studied by Sanchez-Palancia (1980) and 
Keller (1977). The two-space method was applied to wave 
propagation phenomena by Burridge and Keller (1981), Levy 
(1979), Auriault (1980), and Auriault et al. (1985). In principle 
both the volume averaging and two-space method yield the 
same results. However, application of volume averaging is sim- 
pler and enables physical interpretations of the averaged equa- 
tions. 

In contrast to porous media saturated by a single fluid, wave 
propagation in porous media saturated by multiphase fluids re- 
ceived very limited attention from researchers. The general 
trend is to extend Biot's formulation developed for a saturated 
medium by replacing model parameters with the ones modified 
for the fluid-fluid or fluid-gas mixture (Domenico, 1974; Mochi- 
zuki, 1982; Berryman, 1985; Murphy, 1984). Brutsaert (1964) 
who extended Biot's theory appears to be the first one to predict 
three compressional waves. The third compressional wave 
arises due to presence of a second fluid phase in the pores. 
Brutsaert and Luthin (1964) provided experimental data which 
agrees with the results of Brutsaert's (1964) theory. The third 
compressional wave was also predicted by Garg and Nayfeh 
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( 1986) and Santos et al. ( 1990a). Garg and Nayfeh ( 1986) used 
the mixture theory and solved the one-dimensional equations 
by Laplace transformation for two limiting values of viscous 
coupling. Santos et al. ( 1990a) derived the governing equations 
by using the principle of virtual complementary work. In a 
companion paper, Santos et al. (1990b) presented a method 
to determine the elastic constants for isotropic porous media 
saturated by two fluids. In all these works, the momentum trans- 
fer between the solid and fluid phases are approximated by 
Darcy-type expressions. We refer the reader to Corapcioglu 
and Tuncay (1996) for a comprehensive discussion of wave 
propagation in porous media saturated by multiphase fluids. 

In this paper, we apply the volume-averaging technique to 
explore the wave propagation characteristics of a linearly elastic 
porous medium saturated by two immiscible Newtonian fluids. 
The paper will start with a brief review of volume-averaging 
theorems. The macroscale mass and momentum balance equa- 
tions and constitutive relations will be obtained by volume aver- 
aging the corresponding microscale equations. In the micros- 
cale, the grains will be assumed to be linearly elastic and the 
fluids are Newtonian. The coefficients of macroscopic constitu- 
tive relations will be expressed in terms of measurable quantities 
in a novel way. These constitutive relations can be reduced to 
those given by Biot and Willis ( 1957) for porous medium satu- 
rated by a single fluid phase. Momentum transfer terms will 
be formulated in terms of intrinsic and relative permeabilities 
assuming the validity of Darcy's law. 

Volume-Averaging Theorems 
Let L, I ,  and r be the characteristic lengths of the macroscopic 

scale, averaging volume, and pore scale, respectively. The re- 
quired condition for the volume averaging is (Slattery, 1981) 

In this study, we assume that this requirement is satisfied, and 
furthermore, if A is the wavelength of the wave, we assume 1 
< X. In other words, we limit the present study to low-frequency 
waves. We continue with the definitions used in the volume- 
averaging literature. Let Bi be a field quantity of phase i ,  then 
the volume average of B, is defined as 

where V is the averaging volume and R, is the region occupied 
by phase i. The intrinsic volume average of B, , i.e., the mean 
value of Bi in R , ,  is given by 

where Vi is the volume of phase i in the averaging volume. 
These two averages are related by 

where a, is the volume fraction of phase i. Now, we set the 
volume average theorem for a gadient and a time derivative 
(Slattery, 1967, 1968, 1981 ) 

of S,  into other phases. The theorem of a volume average of a 
divergence is stated as 

If B, is taken to be a constant, Eqs. ( 5 )  and (6) take the follow- 
ing forms: 

Microscopic Constitutive Relations, Mass, and Mo- 
mentum Balance Equations 

In this study, the compressible porous medium consists of 
compressible solid grains, and two immiscible viscous com- 
pressible fluids. We assume that there is no mass exchange 
between the phases. The solid phase is assumed to be initially 
at rest, linearly elastic, isotropic, and experiencing small defor- 
mations. Then the constitutive relations are given by 

where us ,  T,, K,,  G,, I are the displacement, incremental stress 
tensor, bulk modulus, shear modulus of the solid phase and the 
unit tensor, respectively. The superscript T denotes the transpose 
of a tensor. We assume that both fluid phases are Newtonian 
with constitutive relations 

where vi , r ; ,  P, and pi are the velocity, incremental stress 
tensor, incremental pore fluid pressure and shear viscosity of 
fluid phase i ,  respectively. In Eq. ( 11 ), the bulk viscosity of 
fluids is assumed to be negligible. The state equations of fluid 
phases are assumed to be in the form of 

where K,, pi and P:' are the bulk modulus, mass density, and 
pressure of phase i. The mass balance equations are expressed 
as 

By combining Eqs. (12) and (13) ,  we obtain 

The pressure increment Pi can be written as 

-P, = K,V.ui  i = 1, 2 (15) 

) (2) =a, - - ! - L , B , ~ . ~ . ~ A  where u, is the displacement of the fluid phase i from a reference 
position, i.e., incremental displacement. We continue with the 
momentum balance equation in terms of incremental stresses 

i # j ,  j = l , . . , N  (6) and velocities 

where Sij is the interface between phase i and phase j ,  ni is the V - T  = p,- 4 j =  S, 1,2. 
outward normal of Si j ,  and u - n ,  is the speed of displacement ' dt 

(16) 
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We can rewrite Eq. (16) by using the mass balance Eqs. (13) 
as 

O(pjvj) + V.(pjvjvj)  j = s, 1, 2. (17) 
V "~-j = Ot 

We note that the body forces do not appear in Eqs. (16) and 
(17) because equations are expressed in terms of incremental 
stresses. The boundary conditions at the solid-fluid interfaces 
are expressed as 

v, = vi and ~-,'n, + T i ' n  i = 0 on S~ i = 1, 2 (18) 

where the subscript (si) denotes the interface between the solid 
phase and fluid phase i and nj is the unit outward vector normal 
to the interface. The boundary conditions at the fluid-fluid inter- 
faces are (Slattery, 1981) 

vt=v2 and ~ - ~ ' n ~ + ~ - a ' n 2 = V ~ y - 2 H y n  on S~2 (19) 

where V~, y, H are the surface gradient operator, interracial 
tension, and mean curvature of the interface, respectively. The 
terms on the right-hand site of Eq. (19) may be interpreted as 
the rate of momentum production per unit area of the phase 
interphase. The first term on right-hand side incorporates the 
position dependency of surface tension upon the interface. 
Therefore the surface gradient operator incorporates the spatial 
variation of the surface tension along the phase interface be- 
cause of impurities in the fluids and temperature variations. The 
second term on the fight-hand side is known as the Laplace 
formula. This results from the fact that a discontinuity in fluid 
pressures exists across a curved interface seperating the two 
immiscible fluids. The behavior of the interface is similar to 
that of a stretched membrane (Bear and Bachmat, 1990). The 
Laplace formula is obtained under the conditions of force equi- 
librium at the microscopic level by stating the balance of force 
components normal to an infinitesimal element of a curved 
interface. H is expressed depending on the geometry of the 
interface curvature. 

M a c r o s c o p i c  C o n s t i t u t i v e  R e l a t i o n s  

Our next step is to obtain macroscopic constitutive relations 
by averaging the microscopic relations over a representative 
elementary volume (Bear, 1972). Volume averaging of Eq. 
(10) yields 

~fR, T,dV=I~,(V'(°~,~)+@fs:u,'n,dA) l 
+ G~.(V(a~) + (V(as~))  r 2 - -  • - 5V" (a,us) l  + I~ )  

i = 1, 2 (20) 

where 

K~.i = 7 (u,n: + nsus - 5u., 'nfl)dA i = 1, 2 (21) 

is a second-order tensor with zero trace. Since there is no mass 
exchange between the phases, the velocity of the interface is 
equal to the velocity of a point at the interface, i.e., material 
surface. Hence, by employing Eq. (9), the integral in Eq. (20) 
can be expressed as 

.~ u~.nsdA = (o~,- a ,  °) = 2xa, i = 1,2 (22) 

where the superscript (0) refers to the reference configuration. 
Since the displacements are assumed to be small, by definition 
uT" Vcej ~ 0. However, cgVb ~ cannot be neglected since aj is 
a finite number. Then volume averaged constitutive relations 
for the solid phase can be expressed as 

a.,.~ = Kda .~V'~  + Aa,.)I  + G.,.(a.,.Vu,. 

+ a , ( v ~ ) r  z -- - g a . ~ V ' u J + K , i )  i =  1,2 (23) 

where ~ is the intrinsic averaged incremental stress of the solid 
phase. Similarly, the volume averaged constitutive relations for 
fluid phases are 

a:--7 = Ki(c~iV "fii" + A a i ) l  + #i(ceiV~/ + o / i ( V ~ )  T 

- ~ a i V ' ~ I +  Ji, +Jik) iq~ k, i =  1,2 (24) 

where 

1 f s  (vini + n~vi - ~vi "ni l )dA.  (25) J~i = V o 

Under the small deformations assumption, the interfaces of the 
phases are not allowed to experience large deformations. Then 
by using Eqs. (21) and (25), and assuming Oui/Ot >> v~. Vu~, 
we can write 

Jo = OK° (26) 
Ot 

Furthermore, employing the no slip conditions (Eqs. ( 1 8 ) -  
(19)), we can write Kj~ = -Kkj and ~ = -Jkj. K0 and J0 

couple the shear deformation of the phases. However, we must 
note that physical meanings of the shear modulus of the solid 
phase and viscosity of the fluid phases are totally different. In 
almost all studies associated with the deformation of the solid 
matrix, these coupling terms are neglected assuming that all 
shear resistance is provided by the matrix only. 

The microscopic boundary condition at the fluid-fluid inter- 
face (Eq. (19)) shows that there is a jump in the stresses of 
the immiscible fluids because of the presence of interfacial ten- 
sion and curvature of the interface. Assuming that smooth pres- 
sure variations within the averaging volume and viscous shear 
in Eq. (11 ) is negligible and can be neglected, we can write 

f i~:  - ~ -  = P~.p = Po~,o(S,)  ( 2 7 )  

where Pi* a n d / ~  are the intrinsic averaged pressures. Pc,v also 
known as macroscopic capillary pressure is assumed to be a 
function of Sl (saturation of the nonwetting phase) only. This 
assumption results from the fight-hand side of Eq. (19) which 
can be interpreted as the rate of production of linear momentum 
per unit area of the interface (Bear and Bachmat, 1990). This 
concept introduces the molecular level effects between the two 
fluids as a force (per unit length) tangent to the interface. At 
the macroscopic level, we assume that the right-hand side of Eq. 
(19) can be expressed as a function of the degree of saturation of 
the nonwetting phase. In a more general level, it will be a 
function of temperatures and concentrations of chemical com- 
pounds in the two fluids. In the literature this function is known 
as the capillary pressure-saturation relation. From now on fluid 
phase 1 will be considered as the nonwetting phase and fluid 
phase 2 as the wetting phase. S~ is related to the volume fractions 
by 

Si - ai i = 1, 2. (28) 
1 - ol,~ 

Then $1 + $2 = 1. Noting that fluid pressures we work with 
are the incremental pressures, as a first-order approximation we 
can write 

PI -- P2 = dPc,p ASi ,  (29) 
dSl 

provided that change in saturation, AS1 is small. 
Deformation of a porous medium can be investigated by 

independently considering the volume change behavior (non- 
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zero trace) and shear deformation behavior (zero trace). In the 
following, we first consider the part of  constitutive relations 
associated with the volume changes. After examining the shear 
deformations, we combine these two to finalize the macroscopic 
constitutive relations. 

To explore the constitutive relations associated with the vol- 
ume changes, we start by introducing 

--ozj~ = ~ 5tr (a jTs)  = Kj(cejV'uj  + Z~xotj) j = s, 1, 2. (30) 

Equation (30) does not contain any rotational deformations. 
For an elastic porous medium saturated by a single fluid, we 
can write (see Appendix A for details) 

V ' ~  = - a ,  (P~ - Pf )  PY (31) 
Kfr Ks 

where Kf~ is defined as the " f r a m e "  or "dra ined"  bulk modu- 
lus. We assume that in case of two fluids ~, is given by 

Pf  = S~P~ + (1 - S~)P z .  (32)  

Then, we can rewrite Eq. (31 ) as 

( P s  - StP~ - (1 - S~)P z )  
V . ~  = -C~s x~r 

(S~P~ + (1 - S~)P~)  
- ( 3 3 )  

K~ 

the change in volume fraction of the nonwetting 
(31) as 

We can express 
phase from Eq. 

~0~1 = ~ ( S i ( 1  - O~s)) = S~(1 - O~s) - S~(1 - a o) 

= (1 - oG°)ASi - S~Aots  - -  A a , A S ~  

(1 - a~)AS~  - S~Aa~ (34) 

and the change in volume fraction of the wetting phase as 

Aaz  = A((1  - S~)(1 - a~)) 

= (1 - S,)(1 - a , )  - (1 - S~°)(1 - a~ °) 

= - ( 1  - a ~ ) A S ~  - (1 - S ~ ) A a s  + A a s A S i  

- ( 1  - a~)AS~ - (1 - S ~ ) A a s .  (35) 

Since we have already assumed that ASs and Ace~ are small, 
the product of  these terms can be neglected. Equations (29),  
(30),  and (33) can be rewritten in the matrix form as 

- a s P ,  = a l l V ' ~  + a 1 2 V ' ~  + a13~7"~ (39) 

- - ( 1  -- O~s)S1P 1 = a 2 1 V ' ~  + a22V'bS + a 2 3 ~ 7 " ~  ( 4 0 )  

- ( 1  - aD(1  - $1)P2 

= a 3 1 ~ ' ~  + a 3 2 ~ 7 " ~  + a 3 3 V ' ~  (41) 

where the constants are obtained as 

blA3 = - K s A l ( 1  - a~)(Kl(1 - S1) + Az + K2Si); 

b2A3 = A i K t S j ( 1  - a , ) ( A 2  + K2) (42) 

b3A3 = A j K 2 ( 1  - $1)(1 - a ,)(A2 + Ki) ;  

ClA3 = A1K~Si(1  - $1) (K2  - K1) (43) 

c2A3 = - K j S i ( 1  - S ~ ) [ - K ~ ( 1  - a.~) + K2Ai] ;  

c3A3 = K2Si(1 - S1)[K~(1 - a~) + KlAn]  (44) 

aliA3 = K~[Ala , (K iA2S1  + K2Ki + KzA2(1 - St))  

+ K~Kfr(1  - a s ) ( K l ( 1  - S.) + $1K2 + A2)] (45) 

al2A3 = K i K ~ A 1 S i ( 1  - a s ) (A2  + K2); 

al3A3 = K2K, A~(1  - S~)(1 - a~)(A2 + K~) (46) 

a21 = a12; 

a~A3  = K~S~(1  - a , ) [K~(1 - a , ) ( K ~  + A J S . )  

+ K2A~Aa(1 - S~)/S~] (47) 

a=3A3 = - K i K ~ S ~ ( 1  - S~)(1 - a ~ ) [ - K ~ ( 1  - as )  + A~A~]; 

a31 = a13 (48)  

a32 = a23; 

a33A3 = K~(1 - S~)~(1 - as)[K~(1 - a~) 

× (K~ + A~/ (1  - S~))  + K~A~A~S~/(1 - S~)] (49) 

where 

decap 
A~ = o ~ K ~ -  K¢,.; A~ = ~ S , ( 1  - S~) (50) 

A3 = A~(KlA~S~ + K~K~ + K~A~(1 - S~))  

+ K~(1 - a0 (K~(1  - S~) + A ~  + K~S~).  (51) 

Our next step is the evaluation of  the solid matrix's shear 

0 dPc,p 0 1 - 1 
dSl  

0 0 Kf,. Si (1 - $1) 

1 1 
0 0 0 

as Ks 

1 1 1 
0 0 

- a~ Sj Kl  

1 1 1 
0 0 

1 - a s  1 - $ 1  K2 

AS1 [ V" 

/ = iv' / J IV'Z/ 
~ LV .~J 

(36) 

Solutions for the unknowns, Aas ,  AS~, Ps, P~, and P2 are 
obtained by inverting the coefficient matrix as 

AOts = b l V ' ~  + b 2 V ' ~  + b3V.2i~ (37) 

ASi = c l V ' ~  + c 2 V ' ~  + c 3 V ' ~  (38) 

modulus @r. As noted earlier, we assume that all shear resis- 
tance of the porous medium is provided by the solid matrix 
only. This uncouples the shear deformation of  all phases, i.e., 
Ku = Ju = 0. If an external shear stress, % is applied to the 
material, we can write 
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- -  h i 

,~ O~,.T,'--'~ = a f r ( V ~  s -J- ( V g )  T 2 - -  • - ~ V .  u J )  (52) 

where -r~ is the deviatoric stress of phase j .  In other words, the 
fluids are viscous but the mechanical shear response of the 
porous medium is provided by the solid matrix only. Fluid 
viscosities will be taken into consideration later when we dis- 
cuss the momentum transfers between the phases as they con- 
tribute the energy losses in the system. We can rewrite the 
complete constitutive relations by introducing Eq. (52) into Eq. 
(39) and definitions of incremental stress tensor of phase 1 and 
phase 2 into Eqs. (40) and (41), 

(T,) = a.~7 = ( a H V ' ~  + a~2V '~  + a l 3 V ' ~ ) l  

+ Gf,.(V~ + (V~) r - ~V'EI)3 (53) 

<rl) = &(1 - a ~ ) ~  

= ( a 2 1 ~ ' ~  + a z 2 V ' ~  + a23V'-~2)l  (54) 

(r2) = (1 - & ) ( l  - a.,.)~ 

= ( a 3 t V ' u , ~  + a 3 2 V ' ~  + a 3 3 ~ 7 " t T 2 ) / .  ( 5 5 )  

As in the case of single phase fluid, the cross terms appearing 
in the expressions are symmetric, i.e., a 0 = aj~. Similar conclu- 
sions were reached previously by Santos et al. ( 1990a, 1990b) 
and Brutsaert (1964) by using energy principles. However, 
Garg and Nayfeh (1986) noted that cross terms are symmetric 
only in the absence of capillary effects. These equations can be 
reduced to a case with a single fluid phase by setting A2 = S~ 
= 0. In that case, the definitions of the material constants are 
identical to those given by Biot and Willis (1957). Usually, 
bulk modulus of the solid grains is very large in comparison to 
the frame bulk modulus. Then, coefficients of the macroscopic 
constitutive relations (Eq. ( 4 2 ) -  (49)) take the following sim- 
plified forms: 

bl = - a s ;  bz = b3 = 0 (56) 

a,  S l (1  - S j ) ( K 2  - K1) 
C l 

(1 - a~)(Kl(1 - Sl)  + A2 + K2Si)  ' 

K i S I ( 1  -- $1) 
C 2 = 

Ki(1 - Si)  + A2 + K2S1 

K 2 & ( I  - S i )  
c3 = (57) 

g l  (1 - S1)A2 + K~S1 

K l a , S i ( A 2  + K2) 

a~ = Ks~; a~z = K~(I - S~) + A~ + K2S~ ; 

K~a,,(l - S , ) (A~  + K~) 
a13 = (58) 

K~(1 - S~) + Az + K~S~ 

K i S 2 ~ ( 1  - a , ) ( K z  + A2/S~) . 
a21 : a12; 022 = 

Ki(1 - S~) + A~ + K~SI 

K~KzS~(1 - S~)(1 - as) 
a~.a = (59.) 

Ki(1 - Si) + A~ + K2Si 

a33 = 

a31 = at3 ;  a32 = a23; 

K2(1 - &)2(1 - a , ) (Kl  + A 2 / ( I  - & ) )  

Ki(I  - S l )  + A2 + K2Si 
, (60) 

Macroscopic Momentum Balance Equations 
Employing the averaging theorems (Eqs. ( 5 ) -  (7)) ,  the vol- 

ume average of Eq. (17) is obtained as 

o(pjvj____/+ v'((pjvj~A) + -~ pjv~(~j - u). njda 
Ot 

l fs, = V ' ( T j ) + ~  7 ) ' n j d a  j q : i ,  i = s ,  1,2. (61) 
i 

The integral on the left-hand side of Eq. (61) vanishes since 
the velocity of the interface is equal to the velocity of a point 
at the interface, i.e., no mass exchange between the phases. We 
assume that the second term on the left-hand side can be 
neglected under the small deformation assumption. Average 
velocities and displacements for all phases are related by 

/ Ouy; O(Uj) i fs j uyvy 'n jda  (~J)=\at/ ot  v , 

j ~: i, i = s, 1,2. (62) 

Since we are interested in the low frequency wave propagation, 
i.e., characteristic length of the microscopic scale is smaller than 
the wavelength, the displacements appearing in the integrand in 
Eq. (62) can be assumed to be constant. Then, Eq. (62) can 
be rewritten by employing Eqs. (4) and (9) as 

oaj  ~ vj . n idA  = aj - -  
aj  Ot + ~ Ot V , a t  

j : ~  i, i = s, 1,2. (63) 

Substitution of Eq. (63) in Eq. (61) and linearization of (&) 
in the resulting equations yield 

02~ 1 f~ (pj)  - - ~  : V "( '0)  + -~ 7-j "n jda  
i 

j #: i, i =  s, 1,2. (64) 

Momentum Transfer (Interaction Terms) 
One of the difficulties in mechanics of porous media is the 

momentum transfer terms appearing in volume averaged mo- 
mentum balance equations. Since the integral is over a represen- 
tative volume of the microstructure, it requires the characteriza- 
tion and solution of the pore-scale equations. This is usually 
done by assuming a simple periodic microstructure. After sob-  
ing the pore-scale equations, the solutions are related to the 
macroscopic variables (Biot, 1956a). A alternative approach is 
the use of empirical relations. In this study, due to the complex- 
ity of the pore-scale problem, we approximate the interaction 
terms by assuming the validity of Darcy's law. Since the theory 
is formulated for low frequency wave propagation, the assump- 
tion of laminar flow is a reasonable one. Biot ( 1956a, 1956b) 
suggests that the laminar flow will break at a critical frequency 
defined by for = 7r#i/4d2py where &, d, #y are the density of 
the fluid, characteristic dimension of the pores and dynamic 
viscosity, respectively. Critical frequency concept has been used 
effectively for saturated porous media. For frequencies higher 
than the critical frequency, Biot (1956b) proposed frequency- 
dependent viscosity terms. In the presence of a second fluid 
phase, one can expect to have a lower critical frequency because 
of various factors. For example, the capillary pressure-saturation 
relation (Eq. (27)) is obtained under static conditions rather 
than dynamic conditions. The effect of the frequency on the 
capillary pressure-saturation curve which is beyond the scope 
of this paper, needs further study. Hence, we strictly limit our 
study to low-frequency waves. Boundary conditions at the solid- 
fluid interfaces given by Eq. (18) imply that 

for fluid phase 1 

,£ - f  % ' n ,  d A  = - ~ 7 h ' n l d A ,  (65) 
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for fluid phase 2 

l fs " r s ' n , d A =  i f ,  V ~ " - V  ~ , , % ' n : d A "  (66) 

Because of boundary conditions at the fluid-fluid interfaces (Eq. 
(19)), we can write 

l a fs - -  % ' n l d A  q~ - -  % ' n z d A .  (67) 
V 1~ V ~ 

These terms result in the cross permeabilities known as Yuster 
effect in the literature (Yuster, 1953; Scott and Rose, 1953). 
The Yuster effect can be neglected for practical purposes (Bear, 
1972). Then, assuming the validity of Darcy's law 

~ r  - r , . n ~ d a  (1 -- a s ) 2 S ~ l  (~1 -- ~s) (68) 
V ds.~ ' ' Kkrl 

1 f (1 - a , ) 2 ( 1  - S~)2>z 
"V" ds r , "  n, d A  = K k ~  

(~ ~) (69) 
s2 

where K is the intrinsic permeabifity of the medium and L~ is the 
relative permeability of phase i. Similar expressions were also used 
by Garg and Nayfeh (1986) and Santos et al. (1990a, 1990b). 

F i n a l  S e t  o f  E q u a t i o n s  

Substitution of the constitutive relations (Eqs. (53) - (55)) 
and the interaction terms (Eqs. ( 68 ) - (69 ) )  in the averaged 
momentum balance equations (Eq. (64)) yield 

02~ V(  + " ~ ) V ' U s  + al3V "u'--2) (Ps) ~ t  ~ - (al l  a,2V "~" + 

q-" v ° ( a f r V U T )  '+ C,(~l  -- ~s) %. C2(~2 -- ~s) (70) 

0 ~  
(Pl )  Ot 2 

= V ( a 2 , V ' ~  + a = V ' ~  + a23X7"~) - C1(~ - ~)  (71) 

(P2) Ot 2 

= V(a31V'~  + a 3 z V ' ~  + a33V'~)  - C2(~ - ~)  (72) 

where 

(1 - c~,)~S~#~ 
C~ = (73) 

Kkr~ 

(1 - a d s ( 1  - & ) = # 2  
C2 = (74) 

Kkr2 

Equations (70) - (72)  are the governing equations for low-fre- 
quency wave propagation in a poroelastic medium saturated by 
two immiscible fluids with unknowns: ~,  ffl, and ff~ These equa- 
tions are hyperbolic with dissipation terms due to the momentum 
transfer. Equations (70) and (72) reduce to Biot's (1956a) equa- 
tions for a single fluid phase by setting S~ and A~ to zero. 

The formulation for the compressional waves is obtained by 
applying the divergence operator to Eqs. ( 7 0 ) - ( 7 2 )  

02e' = aHVe,, + al2V2£1 + a13V2~2 (p,) ,, • 2 
Ot 2 

<)  (75) + ( " ~ l k N  O t /  "~ C2 ~7  O l J  

(p l )  0 ~ ,  
Ot 2 

Oe, O e,~ (76) 
= a21V2e~ + a22V2el + a23V2e2 - Ci Ot O t /  

(P2) 02~2 
Ot 2 

(0e2 0<~ (77) = a31V2Es + 132~2~1 + a33V262 -- C2 O7 Ot ) 

where ej = V '  gj and a~ = a1, + 4Gfr /3 .  The dilatational plane 
harmonic waves propagating along the z-direction are given by 

ej = Bse '(~z-~'~ (78) 

where Bj is the wave amplitude, ~ is the wave number, 03 is the 
frequency, and i is the imaginary number. In general, ~ is a 
complex number. For convenience we rewrite Eq. (78) as 

cj = Bje-~,~ei(~, -z-~° (79) 

where ~ and ~ are the imaginary and real parts of ~, respec- 
tively. The imaginary part of the wave number ~ ,  is usually 
called the attentuation coefficient. The phase velocity is defined 
as c = 03/~,.. Substitution of Eq. (78) in Eqs. ( 7 5 ) - ( 7 7 )  yields 

0 (p_)J 

V - C i - C 2  C1 C2 ] 
+ i03 | Ci - C 1  0 

I Cz 0 - C2 

j a~l a12 a13 
121 a22 /7/23 

-131 032 c/33 

(80) 

which implies that for nonzero solutions the determinant of the 
coefficient matrix must be equal to zero. This equation is known 
as the dispersion equation in wave mechanics. The determinant 
can be expressed as 

Zl X 3  + 22 X 2  + Z3X + Z 4 -~ 0 (81) 

where X = co2/~ 2. The complex coefficients of Eq. (81) are 
given by 

Zi = C i C 2 ( ( p , )  + @2) + ( P , ) )  - (Ps ) (P l ) (P2)03  2 
~2 

• C2(P l ) ( (p2 )  + (Ps))  + C i ( p 2 ) ( ( p l )  + (Ps))  
- t ( 8 2 )  

o3 

a~l( C1C2 - -  (pl)(P2)~) 2) "~ 2CtC2(a,2  + a,3 + a23) + a=(  C, Cz - (ps)(p2)w 2) + a33(CiC2 - (p , ) (p , )032)  
Z2 ~ . . . . . . . .  L° 2 

- i a l ) (C2pl  + Clp2) + 2a12C1p2 + 2a13C2p1 + a22(C2(P2 + p~,.) + Cip2) + a33(Czpt + Cl (ps  + Pl)) 
03 

Z3 = -a*t (a=(p2) + a33(P,))  - a~2(p2) - a23(pl ) + (p.,)( a22a33 - a~3) 

.a11(a22C2 + a33C1) - a~2C2 - 2at2( a23C2 - a33Ct) - a~3Ci + 2a13(a22C2 - a23C1) + (Ci + C2)(a22a33 - a223) 
- 1  

(83) 

(84) 
03 
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Z4 = al*l (a22a33 2 _ - a23) a122a33 + a,3(2a,2a23 - ai3a=) (85) 

In general, for a given frequency co, the polynomial in Eq. (81 ) 
has three complex roots and the wave number ~, has six roots. 
However, only three of these roots are physically possible, i.e., 
the amplitudes of waves should decrease so that the imaginary 
part of ~ must be greater than zero. This implies the existence 
of three compressional waves in a poroelastic medium saturated 
by two immiscible fluids. When we set A2 = 0, we find Z4 
= 0, which indicates that one of the compressional waves is 
associated with the pressure difference between two fluid 
phases, i.e., capillary pressure. 

The formulation for the rotational waves is obtained by 
applying the curl operator to Eqs. (70) - (72) 

02gl,,, 

(P,,) Ot z 

( Q-~-iOt O[l,~ot / ( Oghot Ofl.,'~Ot J = Gf,V2~.< + Cl~k "-~'7' . + C2 (86) 

(oil 0% 02f~-------J - Ci (87) 
(P,> Ot 2 Ot Ot / 

<p~> 
ot ~ \ ot ~ / (88) 

where flj = V × ~. The substitution of harmonic waves as 
given by Eq. (78) in Eqs. ( 8 6 ) - ( 8 8 )  yields 

{ I  : + [i r ° il0 
L o o (p2> o 

+ icy Cl - C ,  Bi = . (89) 

C2 0 - Ca .] B2 

The dispersion equation is the determinant of the coefficient 
matrix and is in the form of 

X2(ZtX + Z2) = 0 (90) 

where 

gt = C I C 2 ( ( P l )  + (P2) + ( P s ) )  - ( P s ) ( P l ) ( P 2 )  c02 
032 

• C2(p,)((p2) + (p.,.)) + Ci(p2)((pl) + (p,)) 
- t ( 9 1 )  

03 

Z2 = - GI"( CIC2 - (Pl>(Pz)W2) 
O,32 

+ i GI'r(C2(P') + Ci(p2)) (92) 

Equation (90) shows the existence of a single rotational wave 
in porous medium saturated by two immiscible fluids. 

C o n c l u s i o n s  

A dynamic theory of a linearly elastic, isotropic porous me- 
dium saturated by two immiscible Newtonian fluids is pre- 
sented. The macroscopic equations are obtained by volume av- 
eraging the microscale mass and momentum balance equations, 
and constitutive relations and assuming small deformations. In 
the microscale, the grains are assumed to be linearly elastic and 
the fluids are Newtonian. Two macroscopic parameters, i.e., 
frame bulk modulus and frame shear modulus are introduced 

to finalize the macroscopic constitutive relations. The capillary 
pressure effects are taken into account by assuming the validity 
of the relationship between capillary pressure and saturation. 
The coefficients of macroscopic constitutive relations are ex- 
pressed in terms of measurable quantities in a novel way. As 
in the saturated porous media, we show the existence of symme- 
try in the macroscopic constitutive relations. Momentum trans- 
fer terms are expressed in terms of intrinsic and relative perme- 
abilities assuming the validity of Darcy's law. Since Darcy's 
law is valid for laminar flow, the theory is limited to low fre- 
quency waves. Another constitutive relation limited to low fre- 
quencies is the capillary pressure-saturation relation. The effect 
of the frequency on the capillary pressure-saturation curve needs 
further study. The final set of equations has an hyperbolic be- 
havior with dissipation due to momentum transfer. We find 
three compressional and one rotational waves in an infinite 
porous medium. The third compressional wave arises due to 
the presence of a second fluid phase. We show that the third 
compressional wave is associated with the pressure difference 
between the fluids and dependent on the slope of the capillary 
pressure-saturation relation. A further study of the subject by 
the authors (Tuncay and Corapcioglu, 1996) shows that an 
analysis of governing equations reveals significant reductions 
in phase velocities of the first and second compressional waves 
in the presence of a gas phase. The third compressional wave has 
the lowest phase velocity and the highest attenuation coefficient 
which make it very difficult to observe, if not impossible. 
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A P P E N D I X  A 

Ef fec t ive  Stress  E x p r e s s i o n  

In this Appendix, we analyze two different stress state condi- 
tions individually to incorporate P~ and P: in the effective stress 
expression (Eq. (31)) .  In each of these cases, we obtain an 
expression for the dilatation of the solid matrix V" G by intro- 
ducing macroscopic material coefficients when necessary. Then 
we will superpose these expressions to obtain a relation for 

V" V, when P, and P: are simultaneously present. Superposition 
is justified by the linearity of the system. 

In the first case, we consider a drained porous medium, i.e., 
P: = 0. Introducing the drained bulk modulus of the fractured 
porous medium K:r, we write 

-a.~Ps = K : r V ' ~ .  (A1) 

K:r can be evaluated experimentally by testing a drained porous 
sample. 

In the second case, we consider a stress state where P, = P:. 
This case corresponds to a porous medium immersed in a fluid 
subjected to external pressure. Because of the homogeneity and 
isotropy of the medium, all volume fractions remain constant 
and Eq. (30) yields 

- P s  = K , V . ~ .  (A2) 

The stress states can be summarized as 

Case 1: P~ = P1 Pf = 0 

Case 2: P., = P2 P: = P2 (A3) 

where subscripts 1 and 2 refer to case 1 and case 2, respectively. 
Since we seek expressions when P; and P: are simultaneously 
present in the system, P1 and P2 are obtained as 

Pi = P s -  P:; P2 = P:. (14)  

The dilatation of the solid matrix is obtained by superposing 
Eqs. (A 1 ) and (A2) as 

a.~Pl P2 
V .uZ - . (A5) 

K:r K, 

Substitution of Eq. (A4) in (A5) yields 

V "~,, = - a ,  (P '  - P:)  P: . (A6) 
K:~ K~ 

The total stress is the sum of the volume averaged stresses of 
individual phases 

(~-t) = a ~  + a : ~ .  (A7) 

Employing the definition of total stress given in Eq. (A7) ,  Eq. 
(A6) can be rewritten as 

trace((T,)) 
+ tiP: = K f ~ V . ~  (A8) 

3 

where 

fl = 1 K:r (A9) 
Ks 

We recall that K:r is the drained bulk modulus of the porous 
medium. Thus, we can write the following equation for a 
drained porous medium: 

trace (02~)) 
- Kf,.V • ~ .  (A10) 

3 

Comparing (A8) and (AI0) ,  we conclude that the effective 
stress is given by 

trace((%fr)) _ trace(0-t)) 
+ fl/~. ( A l l )  

3 3 

Equation (A11 ) is referred as the effective stress principle for 
saturated porous media in literature (Biot and Willis, 1957; Nur 
and Byeerle, 1971). Hence, Eq. (A6) (Eq. (31) in the text) is 
an alternative form of the effective stress principle. 
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Generalized Cross-Correlation 
Functions for Engineering 
Applications, Part I: 
Basic Theory 
Traditional cross-correlation considers situations where two functions or data sets 
are linked by a constant shift either in time or space. Correlation provides estimates 
of  such shifts even in the presence of" considerable noise corruption. This makes the 
technique valuable in applications like sonar, displacement or velocity determination 
and pattern recognition. When regions are decomposed into patches in applications 
such as Particle Image Velocimerty it also allows estimates to be made of  whole 
displacement~flow fields. The fundamental problem with traditional correlation is 
that patch size and hence statistical reliability must be compromised with resolution. 
This article develops a natural generalization of  cross-correlation which removes the 
need Jbr such compromises by replacing the constant shift with a function of  time or 
space. This permits correlation to be applied globally to a whole domain retaining 
any long-range coherences present and dramatically improves statistical reliability 
by using all the data present in the domain for  each estimate. 

1 Introduction 
The cross-correlation of two function or data sets J~ and f2 

(Weiner, 1949, 1964) is a very common tool in applications as 
diverse as sonar, flow determination, and pattern recognition in 
badly corrupted data (Trahey et al., 1969; Coupland and Halli- 
well, 1992; Richards and Roberts, 1971; Lee, 1960; Matic et 
al., 1991; Berryman and Blair, 1986; Dejong et al., 1991; Gon- 
zalez and Woods, 1992). Conventional cross-correlation typi- 
cally applies to situations where the quantities of interestf~ and 
]; are related by a simple constant shift ~': 

f2(~) = f,(~J + ,r) (1) 

and the aim is to obtain a statistically reliable estimate of what 
will be termed here the transformation parameter ~-. In time 
series work ~ is the time t and 7 a time delay while in spatial 
applications ~ and ~" define N dimensional displacement vectors, 
rotations, or some combination of these (Gonzalez and Woods, 
1992; Kamachi, 1989). 

For applications like particle image velocimetry (Willert and 
Gharib, 1991; Utami et al., 1991; Adrian, 1986), where a whole 
flow field is characterized, cellular correlation has been devel- 
oped (Kamachi, 1989; Leese et al., 1971; Ninnis et al., 1986). 
The displacement/flow field is made visible in some way with 
f~ and f2 being consecutive images of the displacement/flow. 
The images are segmented into patches and cross-correlation is 
then applied essentially to each patch in turn to determine an 
average displacement/flow velocity for each such cell. 

The main problem with this approach is that increasing spatial 
resolution means reducing the patch size. As typical applications 
involve digitized noise corrupted data this reduces the informa- 
tion available in each patch for correlation and thus degrades 
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the reliability of the estimates. If the noise is Gaussian variance 
of the sample estimate is inversely proportional to patch size. 
Furthermore, treating each cell independently loses the informa- 
tion theoretic advantages stemming from intercellular coherence 
in the displacement/flow field. These problems could be 
avoided if cross-correlation could be generalized to allow spatial 
or temporal variation of the shift ~- and the present article is 
concerned with developing such a Generalized Cross-Con'ela- 
tion (denoted as GC-C). 

The range of uses of conventional cross-correlation extends 
far beyond the description of displacement/flow problems cited 
here in both practical and analytical areas, and consequently 
the scope of GC-C is expected to be even wider. 

The treatment here in Part I is in terms of continuous variables 
while issues associated with discretisation are addressed in the 
companion work Part II, Belmont et al. (1997). 

2 The Properties Required of a Cross-Correlation 
Function 

The first step in developing the GC-C is to specify those 
features which a cross-correlation function of any kind should 
exhibit. These are natural extensions of the characteristics ex- 
hibited by conventional cross-correlation (Weiner, 1949, 
1964): 

1 Cross-correlation should operate upon a pair of functions, 
or data sets, (in its discrete form), denoted as f~ and f2. 

2 Iff~ and f2 are connected by some transformation of their 
independent variables, then the cross-correlation function 
should exhibit an absolute maximum when a matching transfor- 
mation is induced by cross-correlation processes. A corollary 
of this is that the location of the maximum should allow the 
computation of any parameters associated with the transforma- 
tion, e.g., ~" in Eq. ( 1 ). 

3 The cross-correlation function should approach the abso- 
lute maximum smoothly. 

4 Points 2 and 3 should hold even iffl and f2 are contami- 
nated by extraneous additive components that are uncorrelated 
between .f~ and f2. 
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3 A Generalized Cross-Correlation Function 

3.1 Parameterizing the Shift Function. To be useful it 
is preferable that the variable shift should he generated from a 
parameterized set of known functions, then determining the shift 
is achieved by estimating the so-called transformation parame- 
ters. Consequently the GC-C function must contain correlation 
parameters that, in effect, are varied to match the transformation 
parameters. 

Such a generalized cross-correlation function of m correlation 
parameters, # ~ . . .  #m, derived from two multidimensional func- 
tions ft and f2 will be denoted as Kin(#1 . . .  #,,). The develop- 
ment of such functions begins with a consideration of the sim- 
plest case denoted as K1.2(#), i.e., where the shift function 
depends upon only the single parameter/.z and the data functions 
fl (4) and f2 (4) are one-dimensional. This means that fl (4) and 
f2 (4) are related by 

fAG) = f i g  + s{4, ~o}) (2) 

where the variable shift function S { 4,/.Zo } is a member of the 
family of functions, S{ 4, /z}, that are continuous over F in 
both 4 and # up to their second derivatives. 

3,2 The Approach Used to Develop GC-C. GC-C will 
be developed via an extension of the technique used by Wiener 
to prove that a conventional correlation function exhibits a 
smooth absolute maximum (Weiner, 1949, 1964). A special 
case of this treatment has been employed in the development 
of the Dilation Correlation Function (Belmont, 1990; Belmont 
et al., 199l ), which is related to Wavelets and Melin transforms 
and measures stretching transformations. The Dilation Correla- 
tion has been used to investigate expansion effects in combus- 
tion gases (Belmont et al., 1991). 

The present method establishes an inequality, whose LHS is 
positive and is independent of the correlation parameter #, and 
also reduces to an equality when the correlation parameter # 
equals the transformation parameter #o. The RHS side of this 
inequality serves to define the GC-C function. Such an inequal- 
ity is i 

fr{fL(4 + S{4, #})R(4 ,  #) - W(4, /z) j~(~)I2d~---  0 (3) 

where now R and W are as yet unassigned. 
Expanding (3) produces 

rfl(~ + S{~, #})2R( 4, #)2d~ 

+ £f2(4)2w(L u):d4 

-~ 2 fFf,(4 + s t  4,/-z})Ji(4)R(4,/~)W(4,/-z)d4. (4) 

R (4, #) and W (~,/z)  must now be chosen so that the LHS 
is independent # and exhibits an absolute maximum when # = 
/.z0. 

3.3 Assignment Options for R and W. The fact that R 
and W should remove the dependence of the LHS in inequality 
(4) on # and thus on the form of S(4, #)) ,  suggests that R and 
W are acting as Jacobians of the transformations. Recalling 
conventional cross-correlation implies, if possible, they should 

The present treatment concerns real functions, to extend the result to complex 
quantities a conjugate product replaces the squaring operation• 

map the LHS integrals into the form fr+s(r,,)f~ °r2(U)2du" These 
factors suggest 

and 

R(¢, ~,) = ./1 + os {¢ ,  u____}} 
V o4 

wG, ~) = R(;, ~). 
Hence (12) becomes 

frfl(~ + S{4,1.z})2(1 + - -  oS{Go4 u} )d4 

(5) 

-1- fFA(4)2  ( l + OS{~,#______________}O~ ) d4 

->2£f~(~+S{~,#})f~(4)(1 +OS{4'llZ-----------~)d~. (6) 
04 

The first LHS term is independent of #, provided 
(A) fl (4 + S{~, #}) is square integrable over F 

and 
(B) fJ(4 + S{4, #} is zero outside F. 
Condition (A) and a special case of (B) also apply to conven- 

tional cross-correlation. Unfortunately, the second LHS term in 
(6) varies with #. One way to remove this dependence is to 
reassign W as 

w(4, t,o) = ~/1 + os{¢, ~0} (7) 
V 0~ 

This means that any GC-C definition will explicitly contain the 
transformation parameter #o. As a major application of GC-C 
is the determination of #o such an assignment for W is generally 
unrealistic. This option is viable for certain analytic approxima- 
tions taken at the correlation maximum akin to the perturbation 
method described in Section 7. However, as the basis for a 
general definition, the explicit presence of #o is unacceptable. 

An alternative is to simply take the second LHS term over 
to the RHS then (6) becomes 

f1(4 + s{4, u})2 1 + 0----~-- 

- > 2 f f 1 ( 4 + S { 4 ,  u } ) f 2 ( 4 ) ( 1  +0S{4'#~})d404 

os{¢, ~} 
- frf2(~)2(l + O~--~---)d4. (8) 

The inequality now exhibits all the desired features and thus 
the RHS provides the definition for GC-C: 

f~ ( °s{4'a})a4 K,a(#) = 2 f1(4 + S{4, #})f2(4) 1 + 0 ~  

-- yrf2(4)2 (1  0S{4'~-------------------~ + 04 )d4 .  (9) 

4 Multidimensional Multiparameter Form 
The extension to a multiparameter shift S(4,  #1,0 • • • #m,0) is 

immediate, i.e., 
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Ki,2 (]-Zl . . .  if,n) 

= 2 fvf~({ + S{~, #1... #,,,})JR(k) 

x ( l + O S { L ~ ' " ' m ' } )  d 4 o ~  

- frf2(~)2(l  +OS{4'l&'"tZm})d~. (10) g 

Using the analysis in Section 3 shows that Ki.2(#, . . .  #,,,) 
satisfies the requirements of a cross-correlation function. 

Further generalization of Eq. (10) to accommodate multidi- 
mensional functions f~ (4) and f2(~) is almost as immediate. It 
is achieved by recalling that R 2 and W 2 behave as Jacobians 
J~ and Jw in the LHS integrals. 

4.1 Multidimensional form of J .  In the one-dimensional 
case the Jacobian is simply (1 + OS{ ~, #}/0~) ;  however, in n 
dimensions it becomes the much more corn ~licated determinant 

Ogl 
Og, 

J =  i 

0/5,, 
0{1 

0/5, 
04,, 

0/5,, 

11) 

which defines a transformation between the variables ~1 • • 4,, 
and/5~ . . . /5, , .  J is conventionally written in the compact form 

j = 0 ( / 5 , , . .  /5~) (12) 
0(~1 .. 4,) 

The variables/51 . . .  fl,, are defined by 

P, = 4, + s1 {~, #} (13) 

where & is the ith component of the transformation vector S 
and the nomenclature ~ is shorthand for the multiparameter set, 
i.e., ~ implies the set fit . . . . .  ~,,,. 

Consequently in vector notation the expression for an n di- 
mensional generalized cross-correlation function in m correla- 
tion parameters operating on n dimensional functions f~ (4) and 
f2(~) takes the form 

K,.2(/*) = 2 [ . . .  [ f l (~ + S{~, ~})  f2(fa)Jd~l ..d4,, 
I I L / l ' n  

i e  

1 n 

x 0(4, + s , , . .  4,, + s,,) d~, .. d~,, 
O(~,, .. ~,,) 

_ £ . . .  £ o( ; ,  + s,, .. ¢, + s,,) 
, n 0 ( ~ 1 , , ,  ~n) 

X d ~ , . . d ~ . .  (15) 

Using the analysis in Section 3 shows this multidimensional 
multiparameter form satisfies all the requirements of a cross- 
correlation function. 

4.2 Using ]J] Rather  than J .  The discussion of the map- 
ping from 4 to ~ + S { 4, #} and its generalization in the integrals 
has been rather informal. In general to effect the required trans- 

formation of variables within integrals it is the modulus of J 
which is needed and thus ]JI will be employed subsequently. 
However, in most anticipated applications of GC-C it is ex- 
pected that the transformations of interest are unlikely to be 
severe and thus J has values close to unity. This means I J[ = 
J and the modulus requirement can usually be dropped. 

5 Two-Dimensional Case 

Due to its practical importance the subsequent analysis will 
concentrate on the two-dimensional case. In which case Eq. 
(15) becomes 

K1,2 (P')  

Xf2(~, ,~2)](l+OSl)(l  0S2'~ 0S, 0S2 d41d~2 

- f r ,  yr2f  ~(41,42)(I+OS130~ij (1 -1-~2)0S2~ 
OS, 0S2[ d41d42 (16) 

I 

where S,{ ~l, 42, ~} and $2{ 4,, ~2, #} are the 41 and 42 compo- 
nents of the displacement vector S. 

6 Small Change Approximation 

For a variety of well-accepted reasons in flow-field determi- 
nation the velocities should only induce small changes between 
.f~(~) and f2(~) (Kamachi, 1989; Willert and Gharib, 1991, 
Utami, 1991; Adrian, 1986; Leese, 1971; Ninnis et al., 1986). 
One of the most obvious reasons is simplicity so that to a good 
approximation S(4, /*o) is proportional to the local velocity 
v(~) i.e., 

S(l~,/..to) -~ v(~)6t, (17) 

where the parameter 6t is the time between images Jl and f2. 
In any computational procedure aimed at determining the 

components of ~o the ranges of the m correlation parameters 
as represented by the components of/*, must sensibly be chosen 
so as to reflect those of the transformation parameters, ~0. 
Therefore, unless extremely pathological circumstances prevail 
S(~, !*) will be of the same order as S(~ , /%) .  Hence not only 
are fl (~) andf2(~) very similar but so are J] { ~ + S ( { , / , )  } and 
f2(~). 

This permits a short Taylor's series approximation off~ ({ + 
s(~, t~)): 

A(~ + s(g,  #)) 

-~ f , ( ; )  + ~ s , ( ; ,  ~) + &( ; ,  #) 

1 ~ 02f, 02fl S~(~, tx) 

+ 2 ~ S l ( ~ , j t ~ , ) S 2 ( ~ , i u , )  + O ( S  3) (18)  
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where ©(S 3) denotes the order of the error. 
Using Eq. (18) in Eq. (16) and retaining terms up to qua- 

dratic in the S functions or their spatial derivatives produces a 
second-order 2 approximation for K~.z(lX). At the maximum of 
Kt.2(/x), i.e., at K~.2(P0), the following system of equations 
hold: 

OKi.2 (tx) 
~ /  I,i,o = 0 

(19) 

where 1 -< i -< m. This system can be solved for the m values 
of the parameters #~.o. As will be shown in Section 8 the equa- 
tion system defined by (19) is linear in the ,a~.o. Determining 
the #~.o by solving such a system of linear equations is clearly 
much more efficient than performing a computationally expen- 
sive and potentially unreliable multiparameter hill-climb maxi- 
mum search or optimization processes to estimate these parame- 
ters by finding the maximum of K~,2(/x). To proceed further it 
is clearly necessary to define the functional form of S (~, /x) .  

6.1 Boundary Conditions o n f j ( g ) .  Conditions (A) and 
(B) in Section 3.3 imply that certain boundary conditions will 
apply and possibly restrictions exist on the displacement func- 
tion S(g,  /x). In the small perturbation case on a rectangular 
domain [0, L] [0, L], these issues can be addressed analytically. 

After manipulation, including use of Greens Theorem, it can 
be shown, up to quadratic terms in the Taylor Expansion, that 
as S(~, p)  ~ S(~, P0) the l im~0Ki.2(#)  is given by 

K,,2 (/,L) "-* f2d~ld~2 

( f  S,,o + ff~.S{,o + 2ff~S,,oSz,o)d~z 

- (f2S2. o + ff;2S~,o)d~ } 

+ f ~  {[fS,,oSz%l~:S~}d~2 

2 - { [ f S ,  oS=o~l~=--oLIdg, + O(S 3) (20) 

where C is the boundary contour of the domain and f i s  equiva- 
lent to ft({). The symbols S~,o and $2,0 denote the S values 
corresponding to/x =/Xo and the subscripts, ~ a n d  ~2 have the 
conventional meaning of partial differentiation. Equation (3) 
reveals the boundary conditions upon the various quantities and 
their spatial derivatives. As would be expected from the lack 
of any special distinction between the ~ and ~z-axes, it is also 
possible to derive an alternate form of Eq. (20) in which the 
roles of S~ and $2 are reversed. 

Examination of Eq. (20) and its alternate form shows that 
conditions (A) and (B) in Section 3.3 are satisfied if any of 
the following six requirements hold: 

f:-£ 
Condition 1. The most important case for applications is 

that data function, f~ (g), is zero on the boundary. The ability 
to impose an appropriate window function onf~ means that this 
condition can always be forced if it is not present naturally. It 
is very important to note that in this case no restrictions arise 
wrt the displacement function S(g,  /x) and consequently the 
velocity v. 

2 The need for Ki,2(p) to exhibit a maximum for some S ( p ,  g) means that a 
first-order approximation is inadmissible. 

Condition 2. 
on the boundary. 

Condition 3. 
over the domain. 

Condition 4. 

If either Si, 0 o r  both S2,% and Sz% are zero 

If fl and S.,o and &,% and S2,% are periodic 

The alternate form of Eq. (20) shows that 
conditions 2 and 3 also hold with St.o replaced by Sz0. This 
produces the two further conditions. 

Condition 6. Various interrelationships between the f t ,  and 
the values and derivatives of &.o and &.0 on the boundaries can 
also be found; however, these are not expected to be of much 
practical value. 

While these results are formally limited to the case of a 
rectangular domain, intuition does suggests that this condition 
will also apply to other shaped regions. 

7 A Specific Model for S (~,/x) 
In order to implement Kt2 (t~) in any particular case, whether 

in general or as the small change form, a sensible choice must 
be made for the mathematical form of S(g , /x ) .  In the present 
context "a sensible choice" is one which will adequately de- 
scribe the situation at hand to the required precision using the 
least number of parameters, with some attention being paid to 
analytic simplicity. 

Many anticipated applications will be for "localized flow 
process," e.g., flow within the cylinder of an internal combus- 
tion engine, or more open problems like cyclonic weather sys- 
tems. The "rotational" nature of such flows suggests a set of 
two-dimensional sinusoids of various, i.e., implying a trigono- 
metric polynomial model would appear to be "a  sensible 
choice." Thus 

Max Max 

S (~, ~) = ~ ~ tx,,,e&" ~. (21) 
I=-Max r =-Max 

The coefficient vectors /xt,, have components, #~.t,, and #2.t.r, 
which are complex numbers 

and the wave vector kt,, is 

(22) 

kt,r : k~,l~ + k2.,k~, (23) 

where ~ and ~ are the unit basis vectors for kt.,. The unit 
vectors/21 and/22 are the basis for p ,  these typically but not 
exclusively correspond to those for ~. 

The trigonometric choice is further endorsed by the work on 
Proper Orthogonal Decomposition for describing turbulent 
shear flows (Moser, 1990; Lumley, 1967, 1970). However, 
such functions may not be parametrically parsimonious in other 
applications. An obvious example is in elastic deformation prob- 
lems where orthogonal polynomials normally be a far more 
efficient choice for S(i ; , /x) .  

Equations (21) and (23) place no restrictions upon the fre- 
quencies present and thus S (~,/x) is an Almost Periodic Func- 
tion, Bohr (1947, 1968). This is the obvious form to use if 
there is additional information available concerning the values 
of the important spatial frequencies present in the problem. 
However, if these are not known in advance, then it is probably 
sensible to restrict Eq. (21 ) and (23) to having integer multiples 
of some fundamental wavelength in which case 

(24) 
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where L~ and L2 are the longest wavelength components in the 
~ and ~z directions, respectively. In the absence of additional 
information L~ and/< would normally be set to the bounding 
dimensions of the system thus making Eq. (21) a conventional 
two-dimensional Fourier Series• 

The word, normally, is italicized to emphasize the importance 
of incorporating any prior knowledge about the problem of 
interest into Eq. (21) as this can considerably improve the 
efficiency of the transformation model in terms of the number 
of components required. This is the case for the partially forced 
vortex examined in Part II (Belmont et al., 1997), which has 
one spatial rotation in the domain of interest and falls to zero 
towards the walls and the center• Modeling even the main fea- 
tures of such a flow with a conventional Fourier Series based 
upon a fundamental spatial wavelength L requires many har- 
monics. However, making the fundamental 2L, i.e., a half- 
period over the domain 3, means that Max = 2 in Eq. (21) is 
sufficient to described all the major aspects of this flow. 

8 Determinat ion of  the Parameters  

Determining a set of parameter values which maximize a 
function is a common computational problem. It can be treated 
as a hill-climb process or, more indirectly, as an optimization 
process with Eq. (19) defining the cost function. Typically such 
procedures are eomputationally expensive if a large number of 
parameters must be determined. However, for typical applica- 
tions when the small change approximation described in Section 
7 holds, the problem reduces to solving a system of equations 
which, as shown in Section 8.1, are linear in the m complex 
#~.0 parameters. 

8.1 Evaluation Algorithm for the Small Change Approx- 
inmtion Case. Substituting the trigonometric polynomial 
model for S(g,/x) described in Section 8.0 into the system of 
Eq. (19) produces a set of integral equations in the #0j parame- 
ters. Invoking the small change approximation (18) forfi (4 + 
S(g, ~)),  expanding out and retaining only terms up to qua- 
dratic in S and its spatial derivatives leads to a system which 
is linear in the/.z0.~. 

Extensive but elementary manipulation yields the following 
two equations in #l.g.,,, and/z2.z.,,~ : 

0 = j 2 7 r p o , ( - p ,  - q )  + O 2 ( - p ,  - q )  
Li 

+ Z Z #,., .... j ~  (l + P)®z 
/ = - M a x  m = - M a ×  

× { - p -  l , - q -  m}+  O 4 { - p -  l , - q -  m } }  

f 2~ -2 
+ #2,,., , ,~7-;-(-pm + q l ) ® i { - p  - l, - q  - m} 

L LiL2 

• 27r 
+ j ~ m O 2 { - p -  l , - q -  m} 

27r 
+ j - 7 - p ® 3 { - p  - l, - q  - m} 

L1 

+ ® 6 ( { - - p - - l , - - q - - m } ) } ]  (25) 

3 This means that Eq. (21) has much of the character of a cosine transform 
whose origin lies at the center of the domain. 

and 

27r 
0 = j~-2 q ® , ( - p ,  - q )  + 0 3 ( - p ,  - q) 

v"~ M"x [ { 27r2 
+ Z Z #,., .... + L~_ ( - q l  + pm)®, 

/ = - M a x  m = - M a x  

27F 
× { - p -  l , - q -  m} + j ~ q ® ; { - p -  l , - q -  m} 

• 27r 
+ j T - l O 3 { - p  - l, - q  - m} 

+ ® 6 ( - - P  --  l, - q  - m ) [  
J 

J" j27r 
+ #2,z,,,,] - ~ -  (m + q)®3 { - P  - i, - q  - m } 

+ ® 5 { - p - l , - q - m } } ] .  (26) 

For each pair of p, q values Eqs. (25) and (26)each give 
rise to two equations in terms of the real and imaginary parts 
of #l.~ and #z~. The quantities ®{p, q } are produced from the 
functions fl (~) and fi (~) via the Finite Interval Fourier Trans- 
form shown in Eq. (27). Such integrals are typified by that for 
®t {p, q}, which is given by 

®'{-P'-q}=frfv { 2fi (~)fi(~) 
I 2 

- f~(~) }e-J2~(;,"m~,+~2qr/L'-~d~ld~2 (27) 

where F~ and Fz denote the domains of ~t and ~2, respectively. 
Using the symbol ** to denote a integral transform pair the 

six ® functions are given by 

0 , { - p ,  - q }  ~ 2fl(g)f2(g) - f ~ ( g )  (28) 

2OfZ 
® 2 { - p ,  - q }  ¢* - ~ -  f2(~) (29) 

0 3 { - p ,  - q }  ¢~ 20@zfi fi(~) (30) 

2 0 2 f l  
@4{-P,-q} ~ - - ~ z  fi(~) (31) 

202A 
® s { - P ,  - q}  ~ - - ~ - f ~ ( { )  (32) 

202fl 
06{ - p ,  - q}  ¢~ 0gl0g2 fi(~)'  (33) 

The equation system ( 2 5 ) -  (33) uses integer-related sinu- 
soids as this is probably the form of most practical interest. 
However, with no extra difficulty above the results can be de- 
rived in terms of arbitrary noninteger spatial frequencies. 

8.2 Relationship to Conventional Cross-Correlation and 
the Consequences. For a constant shift S the analysis in Sec- 
tion 3 allows K1.2 (/x) to have the same form as the conventional 
cross-correlation function. This raises the very tempting specu- 
lation as to whether a generalisation of the Wiener Khintchine 
theorem can be found implying the existence of some very 
general and potentially powerful new class of integral trans- 
forms. 

If this were the case then it may open up the route to very 
efficient evaluation of the/x0 in the same way as spectral routes 
are efficient in conventional cross correlation work. Thus, be- 
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yond the purely applications driven viewpoint are much wider 
mathematical horizons. 

R e s u m e  and Conc lud ing  C o m m e n t s  

The definition of a cross-correlation function has been ex- 
tended so as to allow the underlying coordinate shift processes 
operating to vary from point to point over the region of interest. 
As the parameters in the shift function are computed from global 
data the usual compromises between resolution and reliability 
encountered when a region is correlated in a set of patches 
(Kamachi, 1989; Leese, 1971; Ninnis, 1986) is completely 
avoided. This issue is of particular importance in view of the 
central role that patch-based correlation has come to play in 
techniques like Particle Image Velocimetry (Willert and Gharib, 
1991; Utami et al., 1991; Adrian, 1986). 

An approximate scheme has been developed which allows 
efficient calculation of the correlation parameters when the 
changes in the objects of interest are small. As the vast majority 
of applications are likely to be of this kind, such an approach 
is probably the preferred one in practice. The form used for the 
displacement function in the small change scheme is that of 
a trigonometric polynomial. This choice was made partly for 
mathematical utility and partly because such functions tend to 
rather naturally reflect flows in closed regions. However, it is 
important to recognise that it is a very straightforward matter 
to employ any desired set of functions to describe the displace- 
ment S ( ~ , / x ) .  The only real change that occurs is in the form 
of the integral in Eq. (27) and hence of the functions ®~ {k~.p, 
k~,~}. 

The emphasis here has been mainly upon establishing the 
basis for Generalized Cross-Correlation Functions, all of the 
results have been developed in terms of continuous variables. 
The consequences of using sampled data sets for fl and f2 are 
dealt with in Part II, Belmont et al. (1997).  
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Generalized Cross-Correlation, 
Part I1: Discretization of 
Generalized Cross-Correlation 
and Progress to Date in Its 
Implementation 
The companion article, "Generalised Cross-Correlation Functions, Part I ,"  intro- 
duced a generalization of  cross-correlation in which the constant shift used in tradi- 
tional cross-correlation is replaced by a function of  time or space. This allows 
correlation to be applied globally to the whole domain of  interest avoiding the need 
to compromise spatial resolution with statistical reliability. The development in Part 
I was entirely in terms of  continuous variables. This article examines the issues that 
arise when Generalized Cross-Correlation is applied to discrete variable situations. 
Topics discussed include sampling rate requirements, noise rejection, and efficient 
approximate algorithms, with special attention being paid to the condition number 
for  the system. 

1 Introduction 
Part I (Belmont and Hotchkiss, 1997), develops the basic 

theory for generalizing the well-known cross-correlation func- 
tion. The properties of the Generalized Cross-Correlation func- 
tion, (abbreviated to GC-C), were discussed together with its 
advantages in applications. While GC-C has a wide range of 
uses the specific problems discussed concern the determination 
of displacement or flow fields, usually from pairs of images 
(Leese et al., 1971; Ninnis et al., 1986; Willert and Gharib, 
1991; Utami et al., 1991; Adrian, 1986). The development in 
Part I (Belmont and Hotchkiss, 1997) is entirely in terms of 
continuous functions whereas almost all the practical situations 
of interest will involve sampled data sets. Consequently, it is 
necessary to examine the effects that discretization has on GC- 
C and this is the main role of the present article. 

In order to avoid duplication the required definitions and results 
of the continuous variable GC-C theory are all quoted directly 
from Part I. A convention is adopted that a primed equation number 
refers to the corresponding numbers in Part I. Consequently, this 
article must be read in conjunction with Part I. 

It is important to note that examining the effects of discretiz- 
ing GC-C is not the same as considering the details of applica- 
tions. The focus of attention here is on aspects such as spatial 
sampling, noise, and numerical issues associated with the reli- 
able determination of parameters. While consideration is given 
to the effects these factors have on applications this article is 
not concerned explicitly with actual experimental data. All the 
numerical studies employ simulation. 

The problem of identifying the parameters in the GC-C which 
characterize the situation of interest is in general terms the same 
as for any cross-correlation technique, i.e., a search is required 
for those parameters which maximize the value of the GC-C 
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function. There are many different ways of tackling this problem 
but they are all computationally intensive. For this reason what 
is essentially a second-order small perturbation approach to GC- 
C was developed in Part I that produces a set of linear equations 
from which the parameters can be determined. This Part II 
article is mainly concerned with the small perturbation method 
implementation of GC-C. 

The small perturbation approach is very attractive in terms 
of computing resources. However, the process of solving sys- 
tems of equations based upon such approximation schemes is 
notoriously sensitive to the condition number of the system 
(Golub and Van Loan, 1989). Crudely speaking, for the param- 
eter estimates to be reliable, the product of the condition number 
K and the coefficient error bound A must be small compared 
to the smallest parameter value (Golub and Van Loan, 1989). 
As this article focuses upon the small perturbation method the 
examination of condition number and its effects on the applica- 
tions forms an important part of Part II. 

1.1 The Approach to Considering Discretization. It is 
unrealistic to attempt a general analytical application of the 
Nyquist Sampling Theorem directly to the GC-C problem due 
to the inherent need in GC-C to invert a substantial equation 
system. Thus the approach adopted here is to explore archetypal 
cases derived from continuous functions which are sampled so 
as to generate the required discrete data sets. Where required, 
controlled synthetic noise is added to such data to examine the 
noise sensitivity of the technique. Examples of the use of actual 
experimental data in GC-C will be reported on subsequently. 

2 The GC-C Results Needed for Two-Dimensional 
Implementation 

In its most general form GC-C as developed in Part I (Bel- 
mont and Hotchkiss, 1997) applies to arbitrary dimensional 
systems. However, the main interest here will be with two- 
dimensional cases as these reflect the important practical prob- 
lem of extracting displacement/flow-field information from se- 
quences of images. One-dimensional GC-C, which is valuable 
in applications such as the rapid-scan sonar or radar, is simply 
a special case of the present work and will therefore not be 
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examined explicitly. The target problem will be the determina- 
tion of displacement/flow fields from pairs of consecutive im- 
ages. 

3 The Spatial Sampling Frequency Required and 
Number of Parameters Needed 

From a purely algebraic standpoint the bare minimum number 
of spatial samples needed is equal to the number of parameters. 
However, this view loses sight of physical issues and it is more 
fruitful to employ the Nyquist Sampling Theorem. This requires 
that the spatial sampling frequency of all the quantities con- 
cerned is at least twice the highest spatial frequency present in 
the GC-C process, otherwise aliasing errors will be present. 
Clearly the bandwidth Ws of the displacement functions S~ and 
$2 must also match that of the displacement/velocity field. This 
is reflected in the changes wrought between ft and f2, and as 
will be shown in Section 3.1.3 introduces some interesting and 
rather surprising issues. 

If the information used for f~, f~, etc., were obtained in ana- 
logue form, then it is possible to satisfy the sampling theorem 
forfl and f2 via anti-alias filtering prior to the sampling process. 
However, in practice images are typically obtained by CCD 
cameras which directly sample images into pixels. Filtration is 
only possible via the properties of the optical system ~ . Hence 
knowledge of the spatial bandwidth of the problem is necessary 
for choosing the pixel density for the optical sensor. 

3.1.1 The Sampling Rate Requirements of the Initial Image 
f~(~, ~2). The minimum spatial sampling interval 6~ forft is 
6~ = 1/(2Wji) where Wji is the spatial bandwidth of ft .  In 
mechanical strain applications the image fl can be induced (e.g., 
as a pattern painted on the material) prior to applying the loads 
that deform the domain changing ft into f2; thus f~ and hence 
Wf~ are arbitrary. However, in flow-field determinations it is 
unlikely that the image-forming attribute can be introduced suf- 
ficiently rapidly for this to be possible. Consequently in flow 
problems, ft will reflect at least in part the spatial bandwidth of 
the flow field. 

3.1.2 The Sampling Rate Requirements of the Transforma- 
tion Functions S~ and $2 and M the Number of Parameters 
Needed. The bandwidth Ws of the displacement functions S~ 
and $2 is that of the displacement/flow field. Hence the upper 
frequency index Max in Eq. (21 ' )  is the nearest integer above 
LWs, thus according to Eq. (2l  ' )  in the absence of a uniform 
displacement / flow component GC-C requires 16, Max 2 real pa- 
rameters. 

3.1.3 The Sampling Rate Requirements of the Transformed 
Image f2(~t, ~2). Interestingly iff~ is band limited then f2 
must be a wideband function. This is because Eqs. (3) and (4) 
define f2 as ft being frequency (or phase) modulated by the 
trigonometric functions S~ and $2. Such FM modulated func- 
tions have infinite bandwidth. 

This appears to question the legitimacy of describing f2 purely 
as a coordinate transformation of fL because there is nothing 
special about the choice off~ and f2 and at least in flow problems 
both will have similar spectral characteristics. The reason why 
f2 is wideband is easily recognized by considering a Taylor 
Series expansion off2 about fl with $1 and $2 as small parame- 
ters. Applying the appropriate multiple angle trigonometrical 
relationships shows that each extra new term in Taylor Series 
expansion increases the bandwidth. In the small perturbation 
form of GC-C only quadratic terms are retained so in the context 
of the present analysis the spectrum off2 remains band limited. 

3.1.4 Quadratic Factors Containing the Displacement 
Functions and Their Derivatives. The coefficients in the basic 
equation system 25'  and 26'  are derived from Fourier Trans- 

The simplest approach is to use defocusing. 

forms of factors such as f1(~1, ~2,/x0)fld(~,, ~2,/x0)S~(~,, ~z, 

~0)..Given that the small perturbation form of GC-C only re- 
tains terms up to quadratic powers in the S functions or their 
derivatives such products produce a finite maximum frequency 
of 2 { Ws + Wy~ }. This is the highest frequency encountered in 
the sampling rate discussion in Sections 3.1.1 --, 3.1.4 and hence 
serves to define the spatial sampling rate as 4 { Ws + W~ } sample 
m -1 ' 

3.2 Differentiation. The equation system coefficients re- 
quire spatial derivatives of the initial image f~ which are deter- 
mined analytically in the simulation work. Applications using 
discrete noise 2 corrupted data require a combination of mini- 
mum bandwidth and a band limited differentiating digital filter. 
The appropriate techniques are standard practice in two dimen- 
sional discrete linear systems work and the key elements in- 
volved are summarised in the appendix. 

4 The Properties of the Equation System 

4 . 1  Spectral Symmetries and Redundancies. The dis- 
placement/flow functions Si and $2 are real, hence the well- 
known symmetries of Fourier Transforms mean that only half 
of the #0 values are unique. Consequently only half of the 4(2 
Max + 1) 2 equations comprising the system are required to 
solve for these unique parameters. The other half of the system 
must be removed otherwise it introduces linear dependencies 
which lead to singularity. 

4.2 The Condition Number t¢ and Sensitivity. The 
small perturbation GC-C implementation is second-order accu- 
rate, hence there are inevitably errors in the system coefficients. 
Denoting the scale of such coefficient errors by A, the contribu- 
tion of such errors to the solution is magnified by a factor of K 
(Golub and Van Loan, 1989). Thus it is necessary that the 
scale e of St and $2 satisfies 

c >> KA. (1) 

However, e must also remain small enough for f2 to be legiti- 
mately treated as a perturbation off~. 

5 Overview of Numerical Work 
Section 1.2 indicated that it is unrealistic to develop a general 

treatment of the discretisation errors in GC-C and hence the 
approach adopted is to employ continuous functions with known 
#0 parameters to model typical examples. These are then sam- 
pled to provide the discrete data. Using this methodology four 
key issues will be explored: 

First, the state of conditioning of the system and its conse- 
quences. Closely linked to this is, how precisely can the #0.i be 
estimated by the perturbation method? Third, the robustness of 
the technique is assessed by determining its ability to estimate 
the/z0.i in the presence of uncorrelated noise. Fourth, does dis- 
cretization introduce new boundary condition constraints and 
any other additional requirements? 

5.1 Windowing the Images. To avoid leakage errors it is 
standard practice to window space or time series data (Brigham, 
1988). The window functions employed (e.g., Hamming, 1977) 
typically have both zero value and derivative at boundaries. In 
terms of the present coordinates ~ ,  ~2 over the Lt by ~ domain 
one of the simplest window functions W(~l, ~2, L1, L2) is 

W(~l, ~2, L~, ~ )  

2 Any uncorrelated differences between f~ and 1; are treated as noise. In two- 
dimensional applications such as image  work these include out-of-plane displace- 
ments. 
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The distortions introduced by such a window can always be 
compensated for, except very close to the boundaries. 

Such a function automatically satisfies the boundary require- 
ments on f~ and it thus appears that windowing offers a way of 
making arbitrary systems available to GCC. Unfortunately the 
corresponding window needed for f2 must be shifted by S which 
is clearly not known in advance. However, by extending the 
basic window concept, it is possible to employ a development 
of this approach because the small perturbation GCC also ap- 
plies to systems where Ji and f2 are periodic over the domain. 
A simple way to makeJ] andJ; periodic is to analytically con- 
tinue both functions by mirroring them along the ~ and ~_, 
boundaries. This does increase the domain size, doubling the 
fnndamental spatial wavelength, but due to the symmetries does 
not increase the number of unique coefficients needed. 

This technique is termed an extension of the windowing tech- 
nique because the most general way of avoiding leakage is 
actually to make a function periodic over the domain (Brigham, 
1988). The traditional method of forcing it to be zero at the 
boundaries is simply a special case of this. 

5.2 The Local Zoom Technique. The use of the analyti- 
cal continuation form of windowing suggests the possibility of 
a Local Zoom technique to extract a ALl by ALz region of 
interest to which GC-C can be legitimately applied with largest 
wavelengths scaled to ~Lt,  L2xL2. This avoids modeling the 
displacement/flow field on an unnecessarily fine scale over the 
whole domain. 

This Local Zoom technique has obvious applications as a 
general purpose tool. However, it also has the potential to be a 
very powerful method when employed specifically to examine 
the self-similarity aspects (Mandelbrot, 1983) of complicated 
evolving flow fields. The key issue here is how the same dynam- 
ical processes operate on a range of length scales. The Zoom 
facility means that the flow fields can be analyzed at progres- 
sively smaller length scales using the same class of spectral 
model. Operating GC-C in this manner it is almost certain that 
the displacement functions Sj and $2 should be modeled by 
Wavelet Expansions rather than the trigonometric forms pre- 
dominantly considered here. 

5.3 Noise-Free Simulations. The simplest and most natu- 
ral nontrivial example of an image satisfying the boundary con- 
ditions for small perturbation GC-C is wheref~ has the form of 
the window function in Eq. (2), i.e., 

In the examples considered subsequently the domain is taken 
to be square so L~ = L2 = L. Sensible choices for the displace- 
ment/flow field are the simplest forms which exhibit the full 
range of different types of boundary conditions. For each dimen- 
sion three distinguishable cases occur: (i) zero value, finite 
derivative (ii) finite value, zero derivative, i.e., a maximum 
(iii) finite value and finite derivative. The case where both value 
and slope are zero is a combination of (ii) with a constant and 
thus is not treated separately. 

The following are the simplest forms that describe the various 
zero value/slope cases in two dimensions: 

s i n  _ _  

S1 : El 4 COS COS 

32 = E2 4 COS COS 

where sin/cos means the different combinations of sin or cos 
which give different boundary conditions. There are only five 

such possibilities as sin (2pitt~L) cos (2pi~2/L) does not ex- 
hibit a different type of behavior to cos (2pi~/L) sin (2pi~2/ 
L). The finite value and slope situation is representable by 

1 Si = ~, ~ sin ( 2 ~ 1  + ~1) sin ( 2 ~ 2  + ,P2) 

$2 = c2~sin + ~ 3  sin + ~IJ4 . (5) 

The attraction of these forms for $1 and $2 is that they can all 
be described exactly by the trigonometric models given in Eq. 
(21 ')  and thus are ideally suited for testing the precision of the 
small perturbation technique as implemented in discrete form 
in the absence of any other confounding factors. 

The results of error versus size of displacement (the scale 
of S~ and $2) are presented in Fig. 1 (a) .  The domain size L 
was set equal to 2rr for convenience and 13 samples were 
used in each direction which is a little oversampled as the 
Nyquist requirement as defined in Section 3.1.4 is eight sam- 
ples. The phase shifts ~t --+ ~4 in Eq. (5) were set to re/4 
with the displacement scales set equal, i.e., e~ = Cz = e. The 
ordinate in Fig. 1 (a) shows the percentage RMS error in the 
estimates of the model coefficients while the abscissa is the 
displacement scale parameter e as a fraction of the total do- 
main size of 2~r. 

The behavior of the condition number K for the equation 
system described in Section 4 is shown in Figs. l ( b )  and 
1 (c). These plots indicate the variation of K with displace- 
ment scale and also the manner in which the RMS error 
depends on K. 

5.3.1 Discussion of Noise-Free Results'. The form of the 
RMS error is as expected for the small perturbation method, 
i.e., zero error for infinitely small displacements with an increas- 
ing error as the displacement scale increases. There is some 
variation in precision depending upon the type of displacement 
boundary conditions but no evidence of any pathological cases. 
The manner with which the condition number K varies with 
displacement scale in Fig. 1 (b) together with the error depen- 
dence on K in Fig. l (c)  confirms this. 

5.3.2 A Pathological Image Form. Unlike the zero slope 
and value requirement for leakage error reduction, continuous 
variable GC-C only needs a zero image value at the boundary. 
Hence, for completeness it was decided to investigate the behav- 
ior of such image forms. The simplest type of f~ function that 
exhibits this behavior is 

Clearly this function cannot be a physical image because of the 
negative intensities present, nonetheless its simplicity justifies 
its use. 

The RMS error and condition number plots paralleling those 
for the image in Eq. (3) are presented in Figs. 2(a)  and 2(b).  
These show markedly different condition number behavior, both 
in value and form, which are also reflected in very erratic error 
behavior. Given the approximate nature of the method condition 
number behavior of this type generally leads to unreliable solu- 
tion estimates (Golub and Van Loan, 1989). 

That condition number is responsible for this pathology, 
rather than any other type of error, is confirmed by substituting 
the/Zo parameters into the system and evaluating the right-hand 
side vector. The equations are then found to be adequately 
satisfied. Further exploration of this case reveals that the coeffi- 
cient matrix becomes singular in the limit of small displace- 
ments. 
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Fig. 1 (b) Condition number versus the size of displacement for the conditions given in Fig. 1 (a) 

Clearly this form of image is pathological and it would be 
of academic interest to pursue the specific reasons for such 
behavior in more depth. However, in view of the nonphysical 
nature of this type of function, such effort is not considered to 
be justifiable and it is sufficient to highlight the special nature 
of this type of example. 

5.4 N o i s e  R e j e c t i o n  C a p a b i l i t i e s  o f  GC-C. A fundamen- 
tal feature of cross-correlation is its ability to reject noise that 
is uncorrelated with the data of interest. In order to examine 
this aspect of GC-C, calculations were performed with wide- 
band noise added to the displacement functions $1 and $2. This 
simulated noise in the displacement/velocity field. 

The computational procedure was to add wideband random 
noise with a uniform probability density to the displacement 
functions S~ and Sz then to estimate the model parameters and 
hence the error as in the noise-free case. This procedure was 
then repeated 100 times and the RMS error over the set of 100 
runs was determined. As with the noise-free case, 13 spatial 

samples were used in each dimension. The results are presented 
for the most general type of boundary condition i.e., both finite 
value and derivative. Figure 3 (a) shows the results for various- 
sized displacement scale values. The behavior is as expected 
with the error asymptoting to the noise-free limit in each case. 
Even for the modest number of samples used the noise rejection 
is good. 

To assess the effects of data corruption during the image 
capture process noise was added directly to the image f,. Using 
the same conditions as in Fig. 3 (a) with a specific displacement 
scale fraction of 0.005 the results presented in Fig. 3 (b) were 
obtained. These show that there is very little difference between 
the effects of noise addition to either the flow field or the image. 

Finally, in order to illustrate the effect of sample number size 
on noise rejection, the 0.005 displacement scale case in Fig. 
3 (a) was repeated for a modest range of sample values. Figure 
3 (c) shows that for moderate signal-to-noise ratios, as expected 
the noise rejection improves as the number of samples increases. 
The results with a signal to noise ratio of 1 show a large scatter 
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Fig. 1 (c) Percentage RMS error in the parameter estimates plotted against condition number for condi- 
tions given in Fig. 1 (a) 

which reflects the poor statistical quality obtained at high signal- 
to-noise ratios when only 100 averages are used. 

5.5 Larger Systems and Conditioning Effects. The ex- 
amples presented above use 16 real parameters and show that 
reasonable precision can be achieved with condition numbers 
up to the order of 102 . The next obvious question is how the 
condition number behaves as the required number of parameters 
increases. 

Doubling the spatial resolution for the above systems means 
that the number of real parameters needed is increased to 32 
parameters. This causes the condition number to rise dramati- 
cally, typically to several thousand, depending in detail as would 
be expected on the exact form of St and $2. The criterion given 
in Section 4.2 predicts that this is likely to produce unacceptable 
errors. Numerical experimentation with a range of displacement 
functions confirms this to be the case. 

5.6 Condition Number Versus System Size. The present 
findings indicate that the class of linear equations with spectral 
coefficients that are of interest here have poor conditioning 
properties as the size of the equation system increases. To probe 
their behavior more closely some of the coefficients were set 
to zero allowing an arbitrary variation in the size of the equation 
system as opposed to the steps of 16 × 2" as used in the cases 
described so far. This showed that for a wide variety of forms of 
$1 and $2 the condition number K rose smoothly with increasing 
system size up to values of K --~ 100 which as expected gave 
sensible parameter estimates. For even small increases in system 
size beyond this point a discontinuous jump would occur in K 
to values of several thousand. For most cases examined this 
jump occurs in the range 20-30 parameters. In general, the 
larger K is the smaller must be both the error associated with 
the quadratic approximation (and hence the smaller the dis- 
placements) and the error induced by noise effects (Golub and 
Van Loan, 1989). 

The consequences that this condition number behavior has 
for applications are examined in Section 6. 

5.7 Numerical Techniques, The results presented here 
employed direct matrix inversion to solve the parameter equa- 
tion system. Given that Singular Value Decomposition is often 
found to be valuable where systems have poor condition number 
behavior, this method was also explored. However, it showed 
no advantage over direct inversion. 

In analytical terms an equation system with • -> 1 behaves as 
an expansive rather than contracting mapping of the parameter 
vector, thus it would be expected that substituting the known 
values of the parameters into the system should produce a good 
estimate of the right-hand side vector. This was found to be the 
case confirming that the condition number behavior was directly 
responsible for the unreliability of the parameter estimates. 

Given this type of condition number behavior and the fact 
that evaluation of the RHS vector using the known solutions was 
acceptably precise, it appears that the most effective numerical 
technique would be a recursive approximation method. This 
would exploit the fact that the equation system behaves as a 
contractive mapping for the forward substitution process in- 
volved in such techniques, in contrast to the expansive behavior 
manifest in attempts to solve, i.e., invert, the system. As in 
essence the present numerical task is an optimization problem, 
i.e., maximizing the GC-C function, this suggests using either 
traditional linear programming methods or the more recently 
developed genetic algorithms (Goldberg, 1989). The results of 
such a study will form the basis of a future report. 

6 Consequences of Condition Number Behavior on 
Applications 

The main thrust of this work has been to discover the conse- 
quences of discretizing CG-C, mainly in its small perturbation 
form, and not to explicitly consider implementations for applica- 
tions. However, given the limits which the condition number 
behavior imposes on the number of parameters which can he 
reliably calculated, it is clearly necessary to at least consider 
the consequences of this particular constraint on potential appli- 
cations. 

The main finding of the condition number work is that typi- 
cally at most 20 parameters in the S~ and $2 displacement func- 
tions can be reliably determined with the numerical techniques 
employed here. For one-dimensional cases such as rapid scan- 
ning sonar this restriction is unlikely to present a serious prob- 
lem. However, until numerical techniques can be determined 
which circumvent the condition number behavior, the two-di- 
mensional applications of GC-C to experimental data will have 
to be approached in a much more circumspect manner. The 
basic requirement is to make the best possible use of the parame- 
ters available. 
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6.1 Systems With Zero Flow/Displacement on the 
Boundary. The number of length scales that the available 
number of parameters can represent will obviously depend upon 
the context. The most sensible situations to examine first are 
those whose properties motivated the choice of the trigonomet- 
ric polynomials employed to model S, and $2. Such systems 
are characterized by zero displacement/flow velocity on the 
boundary and represent problems such as flows in closed re- 
gions, cyclonic weather systems, strain in regions clamped at 
the boundary, etc. 

Analytically this boundary condition requires that only the 
sin terms in $1 and $2 are nonzero. Thus Eq. (4) in vector form 
becomes 

S ( ~ , ~ )  = ~ ~ ~t,rsin 27r L~/  sin 21r , (7) 
1 = 1  r = l  

i.e., the size of the system has fallen by a factor of four. A 
common feature of such cases is the presence of global rotation 

which means that the longest lengthscale present is twice the 
size of the domain. As an example of this case a simulation 
was made of a very simple model of a cyclonic weather system. 
The defining equations are 

S,(~, ~7) = V~6, sin (-~-~) sin ( ~ - ~ )  (8) 

and 

s i n  , (9) 

where Vx and Vy are the maximum flow speeds in each coordi- 
nate and 6, is the time between images. A vector plot of the 
flow field produced by Eqs. (8) and (9) is shown in Fig. 4. 

The initial image f~ (~, ~7) used is described by Eq. (3) and 
varying amounts of wideband noise were added to the flow 
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Fig. 3(b) A comparison of the effects of adding noise to the displacement field with adding noise to the image 
for the case of a displacement scale of 0.5 percent. The conditions were as for Fig. 3(a). 

field. The fractional RMS errors in the estimated coefficients 
10 are presented in Table 1. 

6.3 Use of GC-C in Conjunction With Cellular  Correla- 
tion. If approximate values are available for the dominant 
components of the displacement/flow field then it is possible 
to select just these in GC-C. This suggests that a combination 
of conventional cellular cross correlation and currently available 
numerical implementation of GC-C could provide a powerful 
tool. 

The approach would be as follows: 

1 Make an assessment of the displacement/flow field with 
cellular technique correlation (Kamachi, 1989; Leese et al., 
1971; Utami et al., 1991) at a cell size L,,. 

2 Determine the spatial spectrum of this estimate and iden- 
tify the key terms in the displacement/flow field as represented 
by S, and $2 formulation. 

If step 2 leads to less than roughly 20 GC-C parameters, then 
these two steps are repeated with a smaller value of Lm. 

3 Perform a GC-C estimation of the chosen parameters. 

This results in a global displacement/flow-field model with 
all the advantages of the GC-C technique. 

6.4 Str ip Correlation. A halfway house between full 
GC-C and conventional cellular correlation is to segment the 
domain into strips of width 6r and perform one-dimensional 
GC-C on each separate strip. This clearly loses the fully two- 
dimensional coherence of GC-C but does provide long-range 
coherence along each strip and allows all the parameters to be 
employed in modeling the behavior along every individual strip. 

Clearly 6r must be small enough to ensure negligible change 
in the coordinate normal to the strip and thus 6r ~ k,~, where 
kma, is the smallest spatial wavelength of interest. A sensible 
check on precision is to perform a second strip GC-C calculation 
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To show the effect of the number of spatial samples per dimension on noise rejection with 
conditions as in Fig. 3(b) with noise added to the displacement field 

along the coordinate normal to that in the first analysis. This 
provides an overall measure of self-consistency and will also 
highlight any specific local anomalies. 

The strip technique is the simplest current numerical GC-C 
option to implement and it is felt that until appropriate numerical 
methods are found for the full two-dimensional GC-C this strip 
method will probably find the most use in application. As this 
approach is very obvious and does not require any additional 
new results, explicit illustrations are not presented here. 

7 Conclusions 

Discrete implementation has been performed of the small 
perturbation form of Two-Dimensional Generalized Cross-Cor- 
relation (Belmont and Hotchkiss, 1997), where the intention 
was to recover a spatially varying transformation between suc- 
cessive image-like functions. Typical applications are expected 

A A A 
t ? 

i 

~"T"-v-~- -<- - -<- - -z- - -~ . -~U~,  ~ ~/ g v ¢ , 
% 

Fig. 4 A vector plot of the flow field as defined by Eqs. (8) and (9). The 
initial image f~ was given by Eq. (3). Noise was added to the displacement 
and 50 samples were used per spatial dimension, Results were averaged 
over 15 separate runs. 

to be the recover of displacement/flow-field data from succes- 
sive images. For a moderate number of parameters the technique 
achieves its desired aim and rejects additive noise in the antici- 
pated manner. 

For a large number of parameters the conditioning of the 
equation system used to extract the parameters becomes very 
poor. The properties of the equation system used to calculate 
the parameters suggests that this restriction can be overcome 
by using optimisation rather than inversion-based solution meth- 
ods. Genetic Algorithms (Goldberg, 1989) appear to be attrac- 
tive in this respect. The consequences for applications are that 
most one-dimensional problems such as rapid scan sonar can 
tackled in a relatively routine way, but that at present two- 
dimensional applications GC-C must be used in a more thought- 
ful manner. A direct approach is viable for cases with a few 
dominant length scales or in conjunction with other methods 
which provide a preliminary exploration of the problem. A com- 
promise form of GC-C can be set up which does yield a very 
large number of model parameters in a routine manner. This 
preserves long-range coherence in one rather than two dimen- 
sions. 

So far only a trigonometric representation of the displace- 
ment/flow-field model version of discretized GC-C has been 
examined in detail in terms of its condition number behavior. 
There are a limitless number of other possible representations 
(Belmont and Hotchkiss, 1997) to explore and given the ana- 
lytic difficulties it will almost certainly be necessary to investi- 
gate each of these in turn. 

8 Results Update 

The above work employed the lowest possible bandwidth 
image, i.e., one cycle over the domain. This has recently been 

Table 1 Effects of wideband noise added to the flow field 
in Fig. 4 

Percentage RMS Noise Percentage RMS 
Added to Velocity Error Coefficients 

0.0 0.03 
1 0.33 

10 3.3 
100 32 
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shown to be very much a worst-case situation and findings for 
wider band images, much more typical of real experimental 
data, show that the condition number problems are far less for 
such images. This allows the full two-dimensional form of GC- 
C can be applied over many length scales with usually more 
than 100 nonzero parameters. The reasons for this are almost 
certainly because the width of any type of correlation object is 
a reducing function of the bandwidth of the data. Hence: (i)  in 
this case, a slowly changing image can be approximated by a 
proportionately wider range of "wrong parameters" than a 
wider bandwidth image, and (ii) for a given size of shift a much 
larger change will be introduced in the wideband case. While 
the formal position concerning the current state of development 
of the Discrete Implementation of GC-C must still remain that 
described for the worst case those potential users wishing to 
implement the technique in the nonanalytic form on typical 
experimentally derived images can expect with some degree of 
confidence to press the method far beyond the most pessimistic 
position. 
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A P P E N D I X  
This appendix lists the discrete convolutions needed to com- 

pute the ®[p, q] functions in the equation system coefficients, 
(28 ')-(33 ') .  

Defining the following Fourier Series coefficients, 

P,[P, q] ~ f l (4 , ,  42) (A1 

P2[P, q] ~ f2(4,, 42), (A2) 

the terms ®~ to ®6 are given by @i[P, q] as previously stated 
in (28'), and 

2 2 N N 71" 
l~2[P' q] = ~vT;~'2J ~, IF, Y. rd~[r, s] 

1 r = 0  s = 0  

× P l [ r , s ] P 2 [ ( r - p ) , ( s -  q)] (A3) 

O3[P' q] = N-'2J ~ ,=o .~=0 sCP[r' s] 

× Pl[r, s]P2[(r - p),  (s - q)] (A4) 

®4[P,q] = - ~5 \ L , , /  ,-=o,,=o 

× Pi[r, s]P2[(r - p) ,  (s - q)] 

," q] = _ 2 (_~_]z ~ ~ s2eP[r,s] 
O lp,  ~ ,  r 2 /  ,:o ~:0 

(A5) 

× P l [ r , s ] P 2 [ ( r - p ) , ( s -  q)] (A6) 

2 (271) 2 ~ ~ rsC~[r ' s] 
t~6[P' q] = N 2 LiL2 ,.=0,=0 

X P ~ [ r , s ] P 2 [ ( r - p ) , ( s -  q)] (A7) 

where the index N must be optimized in a given application in 
order to minimize discrete convolution end effect errors, and 
~5[r, s] is a low pass filter function whose roll-off is set just 
outside the bandwidth of the ®[p, q] coefficients. The roll-off 
of/b[ r,  s ] must be chosen so as a compromise between minimiz- 
ing that portion of the differentiater bandwidth beyond that of 
the ®[p, q] coefficients while also minimizing Gibbs Phenome- 
non errors. 

This approach obviously entails more computational effort 
than direct differencing and should only be invoked when sig- 
nificant uncorrelated high-frequency differences, considered as 
noise, exist between fj and f2. 

Journal of Applied Mechanics JUNE 1997, Vol. 64 / 335 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



N. A. Losin 
10834 N. 32nd Lane, 

Phoenix, AZ 85029 

Asymptotics of Flexural Waves 
in Isotropic Elastic Plates 
The long and short-wave asymptotics of  order O( k6h 6) for the flexural vibrations of 
an infinite, isotropic, elastic plate are studied. The differential equation for the flexural 
motion is derived from the system of three-dimensional dynamic equations of linear 
elasticity. All coefficients of the diJ~Orential operator are presented as explicit func- 
tions of the material parameter T = c~/c~, the ratio of the velocities squared of the 
flexural (shear) and extensional (longitudinal) waves. Relatively simple frequency 
and velocity dispersion equations for the flexural waves are deduced in analytical 
form from the three-dimensional analog of Rayleigh-Lamb frequency equation for 
plates. The explicit formulas for the group velocity are also presented. Variations of 
the velocity and frequency spectrums depending on Poisson's ratio are illustrated 
graphically. The results' are discussed and compared to those obtained and summa- 
rized by R. D. Mindlin (1951, 1960), Tolstoy and Usdin (1953, 1957), and Achenbach 
(1973). 

1 Introduct ion 
The problem of elastic wave motion in infinite plates, because 

of its technical importance, has been the subject of many investi- 
gations. We list here just a few original works, reviews, and 
summaries that contain extensive bibliographies on this topic, 
reflect the main achievements, and describe some basic methods 
of investigation: Achenbach (1973) through Brekhovskikh and 
Goncharov (1994); Davis (1988) through Kolsky (1963); 
Miklowitz (1966) through Ufland (1948). According to some 
early and relatively recent publications: (Redwood, 1960; Bed- 
ford and Drumheller, 1994; Bland, 1988; Brekhovskikh and 
Goncharov, 1994; Doyle, 1989; Reismann, 1988), no simple 
direct relations between velocity-frequency and wave numbers 

analysis of the corresponding dynamic boundary value problem 
is employed. This method was initially applied for solution of 
wave problems for thin-shelled structures in Protsenko (1980). 
Later, it was used for the computer-generated derivation of the 
propagation equations and numerical analysis of normal waves 
motion in cylindrical shells (Losin and Protsenko, 1984). 

2 Formulat ion  

Consider free wave motion in an isotropic plate of thickness 
2h, bounded by two planes z = ±h,  and infinite in (x, y) 
directions. We formulate the corresponding dynamic boundary 
value problem of iinear elasticity in matrix form 

# 0 0 + 0 0 (X 0~ 
# 0~ +0/~)0y 
0 k + 2# (k + #)0x (X + #)0y 

((k + 2~)0~ + #0~ (k-q-~)O~y 0 ) } 
+ (X + #)0~.~ #O} + (X + 2#)0~ 0 - plan U = O, 0 0 ~(O~ + 0 ~) y 

(1) 

for infinite plates are available at the present time. The asymp- 
totic expansion of the frequency equation for flexural waves in 
plates generated by the Rayleigh-Lamb equation does not give 
an adequate approximation, even for velocities v < c,. More- 
over, three-dimensional wave propagation is possible at veloci- 
ties v > c,. All this motivates the search for some different 
approaches for the solution to the problem. This article is an 
attempt to find a relatively simple explicit frequency and veloc- 
ity dispersion relations from the three-dimensional analog of 
the Rayleigh-Lamb frequency equation that would be adequate 
for flexural and extensional waves. The asymptotic method for 
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{( ° o°t  T =  ~ # 
0 0 X + 2 #  

(Oxo. xoy° OH&)) + 0 0 tzOy U = O, z = ~h,  (2) 

where ( 1 ) is the system of Navier's equations written in terms 
of Lam6's constants X, #; the boundary conditions (2) express 
the absence of stresses at the free plate's surfaces z = _+h; 
U = U(x,  y, z, t) = { U,, Uy, U~}' is the displacement vector; 
U = { 7-,~ rye, %~ } ' is the stress vector; p is the density of the 
plate; and I is the identity matrix. 

We seek solutions in the form of an harmonic wave 

U(x,  y, z, t) = U(Z)e-i(kxx+k, y-wO, (3) 

where u(z)  = {ux(z), us(z), us(z)}'  is the amplitude vector; 
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w = w(k) is the circular frequency depending on k (dispersion 
relation); k = {k~, ky} is the wave vector. Differentiating (3) 
with respect to x, y, t, and replacing partial derivatives by their 
symbols 

Ox + - i k . ,  Oy + - i k y  , O, + ico. 

(~A2 --+ - - k ~ ,  02 + - k  2y, O~ "~ --(.0 2, ( 4 )  

we may reduce (1) and (2) to the form 

D u " -  B0(k)u '  - Co(k)u = 0, - h  < z < h, (5) 

T ( z , k )  = D u '  - A 0 ( k ) u  = 0, z = ±h ,  (6) 

o o (x +/z)nl) 
Bo(k )  = ik 0 0 (h  

( h  + ]_z)nl ( k  + N)n2 O [z)n2 
+ 

0 0 /znt~ 

Ao(k )  = ik Okn, kn20 ~ 2 ~  , 

c, 2 = I-z/p, c~ = ( k  + 2 # ) / p ,  vs = v /c , ,  VL = V/CL, 

~ ~ "rc~, v~ ~ .  3' = G I c L =  # / ( k +  2/z), c,~ = = 

3 A s y m p t o t i c  B o u n d a r y  V a l u e  P r o b l e m  

Assuming that ~T~(z, k) has a finite asymptotic expansion of 
N 

the form ~ ( z ,  k) = E ~"~")(~)e ~ + O(eN),  ~ = z / h ,  ~ = kh,  
n=o 

we approximate it by the partial sum of Taylor series in z ( - h  
< z < h ) , a b o u t z = 0  

N 
~ ( z )  = p ( u '  - A ( k ) u )  = Z q"~"~(O)z"/n! + o ( z N ) ,  

n=0 

where the second argument of ~ is omitted for convenience. 
Denoting q-'~- = q~(h),  "q-~7 = ' / ~ ( - h ) ,  and combining them 

as 

T S + T ? = 0 ,  ~ :  - 7~, = 0,  

we obtain the boundary conditions in the asymptotic form 

(h + 2/.z)n~ 2 + #n~ - p v  2 

Co(k) = k 2 (k + #)n2n, 
0 

(k + Iz)nln2 
/zn~ + (X + 2/z)n 2 - p v  2 

0 

o ) 
0 

t~(n 2 + n~) - pv 2 

D = diag { # , # , k  + 2/z}, Bo(k )  = A o ( k )  + A S ( k ) ,  

u '  ~ d u ( z ) / d z ,  v(k)  = w ( k ) / k ,  (7) 

v ( k )  = I v ( k ) l ,  k = Ikl = k~.~+ k~, k = Ik ln  = kn, 

n =  {n~ ,n2} ,  n~ = k f l k ,  n2=kr/k, 

where v is the phase velocity and v is the phase speed of a 
traveling wave; n is the unit direction vector; and n~, n2 are 
direction cosines of n.  Then, we multiply (5) ,  (6) by the diago- 
nal matrix D-~ from the left, eliminate the Lam6's constants k, 
#, and express matrix coefficients through the unique parameter 
7, the ratio of the velocities squared of the shear and extensional 
waves. Introducing the modified stress vector q~, we finally 
formulate the boundary value problem in matrix form as the 
following system of ordinary differential equations: 

u " =  / J (k )u '  + C ( k ) u ,  - h  < z < h, (8) 

~ ( z , k ) = p ( u ' - A ( k ) u )  : 0 ,  z =  ±h,  (9) 

t J (k )  : D - ~ B o ( k )  : kB,  C ( k )  : O - l C o ( k )  : k2C, 

A ( k )  = D - I A o ( k )  = kA ,  

D -1 = diag {#- I ,  #-1, (h + 2#)-1},  

0 0 (T - s -  l ) n l )  
B = i 0 0 ( y  1 1)n2 , 

(1 - y)nl (1 -- T)n2 0 

( o o 
A = i  0 0 , 

(1 - 2 y ) n ,  (1 - 2y)n2 

( 2 ) y - I n 2  + n~ - vs ( y < - 1)nln2 0 
C = ( 3 ' - '  - t )n2n l  n 2 + y - ' n  2 - v~ 0 , 

o o ~ (1  - v~) 

where 2r~(z, k) = p D - b T ' ( z ,  k )  = {rxz/C~, 7-y~/C~, "rz,/c~} is 
the modified stress vector; G, cL are velocities (speeds) of the 
shear and extensional waves, respectively, 

h 2 h 4 
%(0) + 5- T"(o) + ~ T?'(o) ~ o (lO) 

h 2 h 4 
7"~(0) + -~- T~:'(0) + 1 ~  T~'5>(0) ~ 0. (11) 

The approximate equality signs here are due to the truncated 
infinite series on the left-hand sides of (10) and (11 ). Differ- 
entiating q~(z) in z five times, 

q"~n~(Z) = p(u  (n+l) - d ( k ) u ( ' ° ) ,  (n = 1 . . . . .  5),  (12) 

and substituting (12) at z = 0 into (10),  ( 11 ), we arrive at the 
asymptotic boundary value problem in terms of the displace- 
ment vector u:  

u" = l~ (k)u '  + (7(k)u,  - h  < z < h, (13) 

h 2 
u ' ( 0 )  - d ( k ) u ( 0 )  + ~ ( u " ( 0 )  - d ( k ) u " ( 0 ) )  

h a 
+ 2-'4 (u(5~(0) - A(k)u(4~(0)) ~ 0, (14) 

h 2 
u" (0 )  - A ( k ) u ' ( 0 )  + ~ ( U ( 4 ) ( 0 )  --  A(k)uttt(O)) 

h 4 
+ - -  ( U ( 6 ) ( 0 )  --  d(k)u(5~(0))  ~ O. (15) 

120 

Equations (14) and (15) are valid at the free surfaces, i.e., at 
the boundaries of a plate z = ±h.  

4 R e s o l v i n g  O p e r a t o r  E q u a t i o n  

The asymptotic boundary value problem, i.e., the system 
( 1 3 ) -  (15),  can be reduced to one resolving operator equation 
written in terms of lambda matrices (Lancaster, 1966). First, 
we differentiate Eq. (13) four times: 

u (''+2) = /~(k)u ('+t> + C (k )u  (n~, (n = 1 . . . . .  4).  

Then, using Eq. (13) again, we express derivatives u(")(0),  
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(n = 2 . . . . .  6), in (14), (15) through u(0)  and u ' ( 0 )  with 
some new matrix coefficients 

( k  2h2 k 4h4 ) 
I +  2 G + 24 E u ' ( 0 )  

k4h4 ) 
- k A - k 2 h 2 H -  F u(0)  ~ 0 (16) 

2 24 

k2hZ k4h 4 \ 
k B - A  + 6 K +  120 P ) u ' ( 0 )  

k2hZ k4h 4 ) 
+ k  2 C +  6 L +  120 Q u(0)  ~ 0 ,  (17) 

G = C +  ( B - A ) B ,  H =  ( B - A ) C ,  

K = H + GB, (18) 

L =  GC, E = L + KB, F = KC, 

P = EB + F,  Q = EC. 

The system ( 8 ) - ( 9 ) ,  and, consequently, the system ( 1 6 ) -  
(17), can be simplified by rotating the coordinate system, i.e., 
considering the waves propagating along one of the coordinate 
axes, for example, the OX-axis. In this case, the matrices G 
and E have the diagonal structure G = diag { glt,  g22, g33}, E 
= diag {eu, e22, e33}, as well as the matrix coefficient M = 
diag {roll, rn22, m33} in front of u ' ( 0 )  in (16), 

k2h 2 k4h 4 
M = I +  G +  E, 

2 24 

k2h 2 kah 4 
mjj = 1 + - - ~  gjj + - -~ -  ejy, ( j =  1 , 2 , 3 ) ,  

mll = 1 + kZh2/2(3 - 23, - v~) 

+ k4h4/24(v 4 - 2(2 - 3,z)v~ + 5 - 43,), 

m22 = 1 + k2h2/2(1 - v~) + k4h4/24(1 - v~) 2, 

m33 = 1 + k2h2/2(23, - 1 - 3,v~) 

+ kah4/24(3,2v 4 + 2(1 - 3, - 3,2)v~ - 3 + 43,). 

The diagonal matrix M is easily invertible, 

M -l  = diag {mTl ~, m~21, m3-31}, mjj :~ 0, 

and Eq. (16) can be solved for u ' ( 0 )  as 

( k 2h2 k 4h4 ) 
u ' ( 0 )  ~ kM -l A -  2 H -  24 F u(0) .  (19) 

Tu(O) = ( t,, t,= oO'  F, (o)l 
t21 t22 ) l Uy(0) / '~ 0 ,  
o o t~ Lu~(°)J  

(21) 

tll t121 Ts =~ t33. (22) 
TL= kt21 t227 ' 

We regard the system (21) as a homogeneous system of 
linear algebraic equations Tu(0) = 0. Such a system has non- 
trivial solutions if its determinant vanishes, i.e., if 

det T = det TL'det Ts = 0 (23) 

det TL = 0 (24) 

det Ts = 0, or t33 = 0. (25) 

Equation (23) is the three-dimensional analog of the Ray- 
leigh-Lamb frequency equation for a plate. Equations (24) and 
(25) are the corresponding frequency equations for extensional 
and flexural vibrations, respectively. 

5 Flexural  Mot ion  o f  a P l a t e  

Equation (25) is the third equation of the system (21) that 
governs the flexural vibrations, since the operator Ts = t33 affects 
the displacement uz -~ w only. This equation generates the dis- 
persion equation, the velocity equation, and the differential 
equation of a plate's flexural motion. According to the structure 
(20) of the operator T, Eq. (25) has the form 

k2h 2 k4h 4 
,(0) ,(2) ,(4) 0, (26) t33 + 6 ~33 "~ 1 ~  t33 : 

t(o) = _ ykZv~/mt~, t~) yk2 (aov~-  alv~ + a 2 ) / m . ,  (27) 33 

t(4) yk2(bov~ - blv'~ + b2v~ - b 3 ) / m .  33 "~ -- , 

a o ( y ) = ( 3 + y ) ,  a j ( y ) = 4 ( 3 - 2 y ) ,  

a2 (y )  = 8(1 - y) ,  (28) 

bo(y)  =,5 + 103, + 3,2, b~(3,) = 4(9 + 33, - 4y2), 

b2(3") = 16(4 - 23, - y2), 

b3(3") = 32(1 - 3') = 4a2(3'), 

where v, = v/G is the dimensionless phase velocity of a wave. 
The substitution of (27) into (26) gives the desired result 

b o v ~ -  b, + ~ a o  k ~ a '  + k4h4] 

<, 
Substituting (19) into (17), we finally come to the resolving 
operator of the form 

( k 2h2 k 4h4 ) 
Tu(0) = To + T T 2  + - ~ - T 4  u(0)  ~ 0  (20) 

To = C + (B - A ) M - I A ,  

T2 = L + K M - I A  - 3(B - A ) M - 1 H  

T4 = Q + PM-1A - IOKM-IH - 5(B - A ) M - ~ F .  

The matrix of the operator T has a diagonal block structure (in 
general case) where the blocks governing flexural (Ts) and in- 
plane (TL) motion are separated: 

Equation (29) is the final velocity equation for the flexural 
vibrations of a plate. The substitution v~ = ~ J k  turns the veloc- 
ity Eq. (29) into the frequency equation 

( 2 0 )  20 120~w 2 
b o w ~ -  b,k 2 + l ~ a °  ~v~ + b2k 4 + T a l k  2 + h---~- / , 

5 
- b 3 ( k a  + h ~ k 4 )  =O. (30) 

Equation (30) is the dispersion equation for the flexural mo- 
tion of a plate with respect to the ratio tv~ = ¢v/cs. Rearranging 
terms in Eq. (30) and substituting symbols (4) backward by 
the corresponding partial derivatives, (where ~ 4  ~ k4), we 
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finally obtain the differential equation for the flexural motion 
of a plate in the form 

h2 
0,2 + "~- (aoO~ 4 - a l O ~ V  2 + a2V 4) 

h4 } 
+ 12--o (b°O'~ - b~O¢V~ + b ~ ° ~ v ~  - b ~ V ~ )  w = o ,  ( 3 t )  

where the coefficients as(y) ,  bj(y),  (i = 0, 1, 2; j = 0, 1, 
2, 3), of the differential operator are functions (28) of the 
dimensionless material parameter y = c~/c~,  or Poisson's ratio 
u since y = (1 - 2u)/(2(1 - u)).  

6 Velocity and Frequency Spectrums 
The phase velocities of a propagating wave are roots of the 

hicubic algebraic Eq. (29) with coefficients depending on two 
parameters kh and y. The solutions of (29) give the phase 
velocities v, of three wave modes (in general case) as functions 
of kh and y. Their graphs corresponding to Poisson's ratios u 
= 1 and u = 0, are shown in Figs. 2 and 3. For incompressible 
materials (u = ½), the same equation is valid, and the velocities 
distribution can be obtained by solving Eq. (29) with 3' = 0 
(Fig. 1 ). 

The wave motion under consideration is dispersive and the 
dispersion relation is given by Eq. (30). Its roots represent the 
frequency spectrum of vibrations depending on k, h, and y. Dif- 
ferentiating Eq. (30) with respect to k, where a~ = ws(k) ,  we 
obtain the following expressions for the group velocity Vg(k) = 
d w ( k ) / d k  of the flexural motion in terms of the frequency w,: 

The velocity and the frequency spectrums are shown in Figs. 
1-6. 

7 Long and Short-Wave Approximations 
Both long and short-wave approximations are available from 

Eqs. (29), (30). For long waves, the wavelength is very large 
compared to the thickness 2h of the plate, i.e., kh ~ O. The 
limiting form of Eq. (30) is 

~2(boco4 - 20aow~/h 2 + 120/h 4) = 0, (33) 

which obviously has one trivial solution w., -- 0. The corre- 
sponding phase velocity is also equal to zero. The biquadratic 
equation in (33) with coefficients depending on h and y, (or 
u), gives two more roots in general case. These two roots 
are real and different practically in all the physical domain of 
Poisson's ratio (0.02 --< u -< 0.5) and for the thickness range 
2h = ~o - ~. They are values of the cut-off frequencies for the 
first and second modes with the corresponding phase velocities 
tending to infinity (see Figs. 1 and 2). The exception is a very 
small neighborhood of the origin (0 -< u < 0.02) where the 
biquadratic equation has a pair of complex-conjugate roots. 

For the short-wave approximation, the wavelength is very 
small compared to the thickness of a plate. The substitution of 
kh ---, ~ into (29) gives the limiting form of the velocity equation 

boy, 6. - b,v~ + b2v~ - b3 = 0. (34) 

The roots of this bicubic equation are phase velocities of short- 
wave modes depending on the material parameter 3, only. Equa- 
tion (34) has three finite real roots that correspond to the veloci- 
ties of the first three wave modes. The fundamental mode ap- 
proaches to the velocity of Rayleigh's surface wave c~. The 
first mode tends to the velocity c, of the shear wave (v /c ,  ~ 1, 
or, v ~ c,). The second mode approaches to the limit which is 
very close to the thin-plate analog of the bar velocity Cp = 
~/E/(p(1 - 1.,2)) = 241 - y .  

8 Discussion of Results 
1 Equation (31) is the asymptotic approximation of the 

order O(k6h 6) to the differential equation for the flexural mo- 
tion of a plate. The third term with coefficient h4/120 in (31) 
is due to the high order effects. By omitting this term, the Eq. 
(31 ) is turned into the known standard form of the differential 
equation for the flexural vibrations of the order O(kOh 4) 

{DcV 4 - D12V20~ + D2204, + p2hOZ, } w  = O, 

Dc = E ( 2 h ) 3 / ( 1 2 ( 1  - u s ) ) .  

Here, the first and the last terms on the left-hand side of the 
differential equation are from the classical plate theory. The 
second and the third terms are due to the effects of the rotary 
inertia and the transverse shear deformations (Mindlin, 1951; 
Timoshenko, 1955). 

All coefficients of the differential operator (31 ) are expressed 
as explicit functions (28) of the material parameter y. Equations 
(29), (30) are velocity and frequency dispersion relations for 

blco~k - 2co~(b2k 3 + k lOa l /h  2) + b3(3k 5 + lOk3/h 2) 

Vg = 3b0co~ - 2co~(b~k 2 + 20ao/h 2) + w~(b2k 4 + k220a~/h z + 120/h 4 

or in terms ofthe velocity vs(k) = w~(k ) / k  

btv~ - 2rE(b2 + lOal/k2h z) + b3(3 + lO/k2h 2) 

V~, = 3bov~ - 2v~(b~ + 20ao/k2h 2) + v,(b2 + 20a~/k~h 2 + 120/k4h 4) 
(32) 
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flexural motion of a plate that are valid for any long or short- 
wave asymptotics, and for any materials (0 -~ u -< ½). 

2 In order to improve the results, the method used in (Pro- 
tsenko, 1980) was modified. Instead of the approximate matrix 
inversion by means of Neumann's series (Courant and Hilbert, 
1962), the actual matrix inversion was applied for the solution 
of the boundary value problem. Both ways were tested and 
compared. The results of numerical experiments did clearly 
show the advantage of the new approach. This modification 
was found critical and very effective. It eliminated restrictions 
due to the convergence interval for the infinite matrix series, 
and permitted us to create the universal model applicable for 
both long and short-wave asymptotics, and for any materials. 

3 The velocity and frequency spectrums depending on Pois- 
son's ratio are shown in Figs. 1-3 and 4 -6 ,  respectively, in 
dimensionless coordinates 

_ v 2 2 
7r 7r ~2, v~ = - -  , ~ = - k h ,  f~ = - -  w h .  ~=~' a = 2  " c ,  ~" ~ c ,  

There, the subscript i = 0 indicates the fundamental ( lowest)  
flexural mode; i = 1 corresponds to the first equivoluminal 
mode, and i = 2 is associated with the first dilatational mode. 

Comparing these graphs and the corresponding curves 
from Tolstoy and Usdin (1953, 1957), Mindlin (1951, 
1960), and Achenbach (1973),  we can see that the graphs 
of the phase and group velocities for the fundamental wave 
mode are perfectly approximated by the curves Vp0 and Vg0, 
respectively, including incompressible materials (Fig. 1). 
They increase from the origin for long waves, and tend to 
the common limit CR for short waves, as predicted by the 
exact plate theory. The accuracy of the approximation is im- 
pressive at this stage. 

The phase velocities for the first mode are also in good 
agreement, except for the fact that the curve Vr~ (Figs. 2, 3) 
is piecewise smooth. Both curves Vp~ in Fig. 2 and the second 
antisymmetric mode M22 in Fig. 4 (Tolstoy and Usdin, 1953) 
decrease continuously from infinity for long waves, and ap- 
proach the velocity cs for short waves. 

The correspondence between the group velocities is not so 
good. At high frequencies, the limit of Vg ~ is slightly greater than 
cs, that is probably due to the approximation error. Although the 
curve Vu~ in Fig. 2 is not smooth, it is similar to the graph M22 
despite of the scaling factor used in Fig. 2 (Tolstoy and Usdin, 

1957), while the curve gg 2 only reminds the corresponding 
result in Fig. 4 (Tolstoy and Usdin, 1953). 

4 One more wave mode is available in general case from 
the bicubic Eq. (29) with the phase velocity Vp2, the group 
velocity Vu2, and the fi'equency branch m z  in Figs. 1-6.  Its 
phase velocity gp2 ~ 00, as k h  ~ 0; Vp2 coincides with Vp~ for 
the intermediate wavelengths (see Figs. 2, 5), and Vp2 is very 
close to the velocity Cp, as k h  "--~ oz. This last result indicates to 
some symmetric motion of a plate at high frequencies. It was 
mentioned by Tolstoy and Usdin (1957) for high modes, and 
confirmed experimentally by Evans et al., (1954). 

The coupling of the first flexural and the first longitudinal 
modes in both velocity and frequency spectrums occurs over 
the interval u < 0.37 in Figs. 2, 3, 5, and 6. For high modes, 
this phenomenon was described by Mindlin (1960) and Tolstoy 
and Usdin (1957), but it was not reported for low (i = 1) 
equivoluminal or dilatationat branches of the infinite plate with 
traction-free boundaries (Achenbach, 1973, p. 232). The credi- 
bility of this result is to be verified. 

i 8 
i i i m 2  i i 
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i.~ 3 -  

2 

1 
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0 1 5 
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Fig. 4 Frequency spectrum o f  f l e x u r a l  m o d e s  m l ,  ( i  = 0, 1, 2 ) ,  f o r  v = 
} (~ = o) 
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5 The interesting point is that the number of different 
branches in the frequency and velocity spectrums depends on 
Poisson's ratio and the wave number range in Figs. 1-6.  The 
perturbations in the group velocities Vgj, Vg2 are due to the 
bifurcation points of the corresponding phase velocities Vj,~, 
Vp2. It should be separately noticed the appearance of the nega- 
tive group velocity Vg~ in a small neighborhood of the left 
bifurcation point in Fig. 2. This effect was detected by Tolstoy 
and Usdin (1957), and mentioned by some authors (Mindlin, 
1960; Redwood, 1960). 

Conclus ion  
The flexural wave motion in infinite isotropic elastic plates 

was studied by means of the asymptotic method applied to 
thin-shelled structures in (Protsenko, 1980). This method 
allowed the reduction of the boundary value problem to the 
corresponding asymptotic operator equation that generated 
the equations of propagation and the three-dimensional ana- 
log of Raleigh-Lamb frequency equation for flexural waves 
in plates. Some modification of the initial technique permitted 
development of the universal asymptotic model applicable 
for any long or short-wave approximations, and for any mate- 
rials. 

The three-dimensional analog of Rayleigh-Lamb fre- 
quency equation for plates was obtained and used to generate 
the approximations for dispersion relations. A relatively sim- 
ple explicit frequency and velocity dispersion equations, the 
group velocity formulas, and the differential equation of 
flexural vibrations for plates were derived. The coefficients 
of all equations and formulas were presented as explicit func- 
tions of the material parameter y. 

The comparison of spectrums in Figs. 1 - 6  and the corre- 
sponding results in Mindlin ( 1951, 1960), Tolstoy and Usdin 
(1953, 1957), and Achenbach (1973) did show that the ap- 
proximations given by formulas (29),  (30) ,  and (32) were 
obviously close to well-known results for flexural waves in 
plates. Variations of the velocity and frequency spectrums 
depending on Poisson's ratio were illustrated graphically. 
The velocity and frequency branches of the first two flexural 
modes were approximated well with some minor exceptions. 
Some discrepancies in graphs of velocities and frequencies 
were detected. A number of interesting features, such as neg- 
ative group velocity, were observed. Some of these notable 
effects are still to be interpreted correctly. 
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The derived dispersion relations give good approximations 
for the first two frequency and velocity modes without any 
correction factors, as in the Reissner-Mindlin theory. 

The asymptotic analysis of extensional waves in plates is 
the subject of a separate publication. 
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Closed-Form Forced Response 
of a Damped, Rotating, Multiple 
Disks/Spindle System 
This paper is to study forced vibration re~ponse of  a rotating disk~spindle system 
consisting of  multiple flexible circular disks clamped to a rigid spindle supported by 
two flexible bearings. In particular, the disk~spindle system is subjected to prescribed 
translational base excitations and externally applied loads. Because of  the bearing 
flexibility, the rigid spindle undergoes infinitesimal rigid-body rocking and translation 
simultaneously. To model real vibration response that has finite resonance amplitudes, 
the disks and the bearings are assumed to be viscously damped. Equations of  motion 
are then derived through use of  Rayleigh dissipation function and Lagrange's equa- 
tion. The equations o f  motion include three sets of  matrix differential equations: one 
for  the rigid-body rocking of  the spindle and one-nodal-diameter disk modes, one for 
the axial translation of  the spindle and axisymmetric disk modes, and one .for disk 
modes with two or more nodal diameters. Each matrix differential equation contains 
either a gyroscopic matrix or a damping matrix or both. The causal Green's function 
of  each matrix differential equation is determined explicitly in closed form through 
use of  matrix inversion and inverse Laplace transforms. Closed-form forced response 
of  the damped rotating disk~spindle system is then obtained from the causal Green's 
function and the generalized forces through convolution integrals. Finally, responses 
of  a disk~spindle system subjected to a concentrated sinusoidal load or an impulsive 
load are demonstrated numerically as an example. 

1 Introduction 
Recent advances of electronic and manufacturing technology 

have made mechanics of computer hard disk drives a major 
area of intensive research. Currently, most high capacity hard 
disk drives support ten disks and have track density of 6000 
tracks per inch. Moreover, the disk drive industry doubles the 
track density almost every other year. Increased track density 
implies increased data storage per disk as well as reduced cost. 
With current hard drives, the radial spacing between the annular 
data tracks is about 6 #m. The allowable misregistration be- 
tween the read/write head and the data track is about 0.6 #m. 
Mechanical vibration exceeding this allowable misregistration 
may cause errors in data storage and retrieval processes. 

A major vibration problem encountered in hard disk drives 
is the unbalanced (0, 1 ) mode (Fig. 1 ), predicted by Shen and 
Ku (1995) and experimentally verified by Low and Shen 
(1996). For the unbalanced (0, l ) mode, the spindle is whirling 
conically about the disk/spindle centroid. In the meantime, the 
disks oscillate with the whirling frequency and undergo an in- 
phase deflection of zero nodal circle and one nodal diameter. 
(The description above for the unbalance (0, 1 ) mode is for a 
ground-based observer.) In general, the unbalanced (0, 1 ) mode 
has low resonance frequency (<500 Hz) and large in-plane 
vibration amplitude because of the spindle rocking. Moreover, 
this mode is very lightly damped if the supporting bearings 
have small damping capacity (e.g., ball bearings). The combi- 
nation of the low resonance frequency and small damping make 
the unbalanced (0, 1 ) mode very susceptible to external excita- 
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tions, which often result in excessive in-plane vibrations ex- 
ceeding the allowable misregistration. 

Traditionally, hard disk drives have been modeled as flexible 
disks mounted on a rigid spindle with rigid bearings (Mote, 
1970; Iwan and Stahl, 1973; Chert and Bogy, 1992). This 
model, however, fails to predict the resonance of the unbalanced 
(0, 1 ) mode, because this model doesn't take into account the 
rigid-body rocking of the spindle. A more elaborate model, 
borrowed from rotordynamics, consists of flexible disks and 
flexible spindles (Dopkin and Shoup, 1974; Chivens and Nel- 
son, 1975; Flowers and Ryan, 1993). This model, however, 
becomes somewhat impractical and excessive for hard disk 
drives, because disk drives all have very short and fairly rigid 
spindles. To modify this model for disk drive applications, Shen 
and Ku ( 1995 ) presented a formulation that considered multiple 
flexible disks clamped to a rigid spindle supported by elastic 
bearings. With this new model, Shen and Ku (1995) success- 
fully predicted the resonance of the unbalanced (0, 1 ) mode. 
This model is also verified experimentally by Low and Shen 
(1996) through experimental modal analysis for a ten-disk hard 
drive. Shen and Ku (1995), however, assumed no damping in 
their model and did not study the forced response of the disk/ 
spindle system. An accurate model for forced response will 
substantially reduce the time and number of tests needed in the 
design phase of a disk drive. 

To predict the forced response analytically, there are three 
major difficulties to overcome: damping, gyroscopic effect, and 
closed-form solution. To model real vibration responses that 
have finite resonance amplitudes, the mathematical model pro- 
posed by Shen and Ku (1995) needs to be augmented to include 
damping of the disks and the bearings I . Because the disk/spin- 
dle system is damped and spinning, gyroscopic terms and damp- 
ing terms will appear simultaneously in the equations of motion. 

' The magnitude of damping virtually determines the magnitude of the reso- 
nance peaks. When damping is absent from the model, the resonances peaks 
becmne unbounded. 
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Fig. 1 Unbalanced (0, 1) mode with multiple flexible disks and a rigid 
spindle 

As a result, the method of modal analysis for gyroscopic sys- 
tems proposed by Meirovitch (1974, 1975), D'Eleuterio and 
Hughes (1984), or Hughes and D'Eleuterio (1986) will no 
longer be feasible. In particular, closed-form solutions are diffi- 
cult to obtain. 

The objective of this paper is to derive a closed-form forced 
response of a damped, rotating disk/spindle system containing 
arbitrary number of disks. The mathematical model proposed 
by Shen and Ku (1995), which consists of N linearly elastic 
disks, a rigid spindle, and two elastic bearings, is augmented 
in this paper with viscous disk and bearing dampings. The as- 
sumption of viscous damping is a crude approximation for pre- 
liminary analysis. In reality, damping mechanisms in disk drives 
can include material damping of disk/spindle systems, aerody- 
namic drag, frictional loss in bearings and at disk/spacer inter- 
face. Most of the damping mechanisms in disk drives are, in 
fact, nonlinear. Detail modeling of each damping mechanisms 
will make the already complicated equations of motion more 
involved, and their solutions will become extremely unwieldy. 
Also, the external excitations in this augmented model will only 
include prescribed base motion of the disk/spindle system and 
time varying loads applied to the disks. Follower excitations 
that depend on the motion of the disks and the spindle (such 
as spring and inertial loading from the recording head assembly) 
are not considered in this paper, because follower excitations 
will fundamentally change the dynamics of disk/spindle sys- 
tems and result in instability (Iwan and Stahl, 1973). 

The availability of the closed-form solutions results from the 
particular format that couples the gyroscopic terms and the 
damping terms in the equations of motion. This coupling format 
allows the causal Green's function of the equation of motion 
to be determined in closed-form through use of matrix inversion 
and inverse Laplace transform. The closed-form forced response 
of the damped rotating disk/spindle system is then obtained 
from the causal Green's function and the generalized forces 
through convolution integrals. 

2 Formulat ion  
Consider a disk/spindle system E that contains N elastic 

circular disks and a rigid spindle as shown in Fig. 2. Let Rc be 
the position vector from a fixed reference point O to the centroid 
G of the disk/spindle system, and let to be the angular velocity 
of the disk/spindle system E. 

The rigid spindle rotates with a constant angular speed co3 
and is simply supported by two bearings A and B (not shown 
in Fig. 2). The bearing A, which is distance z, from the centroid 
G, has transverse stiffnesses kax, kay and axial stiffness k,z. In 
addition, the bearing has isotropic transverse viscous damping 
coefficient ca and axial damping coefficient caz. The bearing B 
can be described in the same manner with the subscript a re- 
placed by b. 

Z 

l••g (i) (r0, t) 

O 

Fig. 2 A disk/spindle system with N flexible disks and a rigid spindle 

Consider the ith disk. The disk is rigidly attached to the 
spindle through the center Ci (Fig. 2), which is distance zi 
away from the centroid G of the disk/spindle system. In the 
following, a subscript i or a superscript (i)  will refer to quanti- 
ties of the ith disk. The subscript i will sometimes be dropped 
to simplify the notation. In addition, the ith disk has inner radius 
ai, outer radius b~, thickness hi, density p~, flexural rigidity Di, 
Poisson ratio u~, and viscous damping coefficient ci. Also, let 
I~ i~ be the mass moment of inertia of the disk with respect to 
its diameter. 

The motion of the disk/spindle system is described in terms 
of the following coordinate systems. Figure 3 shows the Euler 
angles 0x, Oy, and ~p together with a set of rocking coordinates 
xyz with unit vectors i, j ,  and k. The rocking coordinate system 
is related to the inertia frame X YZ through the coordinate trans- 
formation 

(i): F  °:oy 0 
L sin Oy - s i n  0x cos Oy 

-c° Ox inO -'(i ) s i n  , 
cos Ox cos Oy d 

(1) 

where I ,  J ,  and K are unit vectors of the inertia frame X YZ. 
Also note that x"y'z" is a set of coordinates attached to the disk, 
and x'y 'z '  is an intermediate coordinate system to define the 
rocking coordinates xyz. 

Under these coordinate systems, 

X, x t 

z,z" z ' ! /  z 

Fig. 3 Euler angles of the spinning elastic disk 
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Ra = (ax + Rx)I + (ay + Ry)J + (az + R~)K (2) 

where 

a( t )  -= ax(t)I  + ay(t)J  + a~(t)K (3) 

is the prescribed motion of the disk/spindle housing, and R~, 
Ry, and Rz are rigid-body translation of the disk/spindle centroid 
relative to the housing, In addition, the transverse vibration of 
the ith disk is 

ui = wi(r ,  ,8, t )k  (4) 

where w~ (r,/3, t) is the deflection of the i th disk measured from 
an observer rocking with xyz. Moreover, the disk deflection we 
is discretized through an eigenfunction expansion 

wi(r ,  /3, t) = Z Z w},i~(r, /3)q(,,i~(t) (5) 
in-O n 

where w},i~(r,/3) is the mode shape (or eigenfunctions) of the 
ith elastic disk subjected to the axisymmetric membrane stresses 
from rotation, i.e., wl,i~(r, fl) are the eigenfunctions of the fol- 
lowing eigenvalue problem: 

(i) ~,- .4  (i) h~ 0 { (9 (o \  
£[Wm,,] =-- r Or ~, Or } 

t ~ v  w .... - - - -  ral.i? ow;,;;,| 

1 y= Z 
ee=a,b 

2 2 [c.(vL + V.y) + c.zv.~] 

_ l ~,ci dAi (10) 
+ 2 i =  1 \ dt / 

where the first sum results from the bearing damping and the 
second sum results from the disk damping. In (10), v.~i + V~yj 
+ v.~k, (a  = a,  b) are the velocities of the spindle relative to 
the disk/spindle housing evaluated at the bearing supports, and 
dwf ld t  is the material derivative of the disk vibration. Substitu- 
tion of the explicit expressions of the relative velocities and 
dwf ld t  found by Shen and Ku (1995) into (10) results in 

N ~ 
I i f '=  ~ Z ~il]i)[ Z Z ( ' ° )  " (i> 2 ,q ..... + ntfiq ...... ) ] 

i -1  m=0 n = - ~  

-}- [ Y .  C . [ ( I ~  x -]- Z . ( )y  COS Oy) 2 
ee - a  ,b 

+ (/~y - z~)x cos 0x cos Oy + z.Oy sin 0~ sin Oy) 2] 

+ ½ Y, c.z(l~ - z~O~ sin 0~ cos 0y 
ce=a,b 

- z.0y cos 0x s i n  0 y )  2 (11) 

where 

h (i)  ~121A)(1) 
iO-00 ~ ' .  mn 

r 2 002 
p i h i  f ( 0 1 2  (i)  ~w ...... w ..... (6) ~i = ci (12) 

pihi 

where cr~. ) and aco~ ) are membrane stresses of the ith disk from 
rotation, and w},~], is the natural frequency of the ith disk from 
a plate-based observer. Note that 021,i~ is a function of the rota- 
tional speed 0o3, because the membrane stresses cr~.~) and cr¢0~ 2 
depend on w3. Besides, wl,i~(r, /3) satisfy fixed-end boundary 
conditions at the inner rim and free-end boundary conditions at 
the outer rims. From separation of variables, (6) implies that 

~R},i],(r) cos n/3, n --> 0 

w~'i~(r' /3) = [ Rl, il,,l(r) sin Inl/3, n < 0 
(7) 

where R l,i~(r) satisfies the fixed-free boundary conditions at the 
inner and outer rims. Because (6) and the fixed-free boundary 
conditions form a self-adjoint eigenvalue problem, the mode 
shapes w},i~, satisfy the following orthonormality conditions: 

(8) , , m n , , p q ~ m i  = 1 1 UmptJnq 

f (i) (i) l(i)f,,(i)]2.q .q 
[ ' [ W , , m ] W p q d V  i = ( 9 )  z ] L LAg Dill J Ump tJnq • 

In summary, the coupled motion of the disk/spindle system 
is described by the following generalized coordinates: infinites- 
imal rigid-body translation R~(t), Ry(t) ,  and R~(t) of the disk/ 
spindle centroid, infinitesimal rigid-body rocking Ox(t) and 
0y(t) of the spindle, and generalized coordinates q~,i~,(t) of the 
transverse vibration of the ith disk. The Rayleigh dissipation 
function and the generalized forces will be derived in terms of 
these generalized coordinates in the next two sections. Then the 
equations of motion of the damped disk/spindle system will be 
derived through use of Lagrange's equation. 

3 Rayleigh Dissipation Function 
The Rayleigh dissipation function of the damped disk/spindle 

system is 

4 Generalized Forces 
In this paper, the external loads applied to the ith disk are 

assumed to take the form of g")(r0, t )K.  In other words, both 
the orientation of the load (K)  and the point of application (r0 

x0I + y0J) are fixed in the space; see Fig. 2. The virtual work 
done by g°)(r0, t )K  is 

6W = ~ f g" ' ( r0 ,  t )6Ai(ro,  t)dACo i) (13) 
i=1 i /  

where A~(r0, t )K  is the deflection of the ith disk measured 
from a ground-based observer located at to. According to Shen 
and Ku (1995), 

Ai(r0,  t) = Rz - xoOy + yoOx 

+ Y~ Y, w},i~,(ro,/3o)q~,~],(t) (14) 
m : 0  n = - ~  

where ro and/30 are the polar coordinates of ro. After (14) is 
substituted into ( 13 ) and the variation is carried out, the general- 
ized forces are the coefficients of 60~, 60y, 6R~ and ~q~ q,,,, <~ . 

5 Equations of Motion 
With the Rayleigh dissipation function and the generalized 

forces, the equations of motion are derived through use of La- 
grange's equation (Shen and Ku, 1995) followed by a lineariza- 
tion assuming constant ~ = ~3, 0x ~ 1, and 0v ~ 1, The 0x 
equation is 

N 

~0~ + ~cO3by + Y, Ill)[ Z .,(i)r~,o) .(i) • -,,, ~,,,,-1 - 2a23qml)] 
i = I m = 0 

+ Zakay(ZaOx - R y )  -I- Zbkby(Zb02.  --  R y )  - -  Z , , C a ( l ~ y -  Za~(,.) 

-Z t ,  cb(l~y--zt, O,.)= ~ f g°)(ro,  t)yodm~i~ (15) 
i=1 i t /  
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where 

• 7rpihi Jill i a~,~ ~= 1~ o Rl,~](r)r2dr (16) 
t 

and ~ and/3 are centrodal mass moment of inertia of the disk/ 
spindle system with respect to the x and z-axes, respectively. 
The Oy equation is 

[lOy --  [3~30x_ __ ~ I]i)[ --,,,"(i)r'u(i)kldml "JI- 2w3q'(i)m, 1 ) ] 
i -  1 m = 0 

+ Zakax(ZaOy + Rx) + z~k,,~(z,,Oy + R~) + ZoCa(ZaOy -'~ g x )  

"q- ZbCb(ZbOY "~ l ~ x ) =  - - ~  r g(° ( r ° '  t)x°dA~°' (17) 
i=1 

The R~ equation is 

MR~ + k,x(R~ + GOy) + k~,~(R~ + zbOy) 

+ co(g~ + z,Oy) + co(R~ + z~0y) = - M G ( t )  (18) 

where M is the mass of the disk/spindle system• The Ry equation 
is 

Mt?y + kay(Ry  - ZaOx) + kby(Ry  - ZbOx) 

+ c~,(gr - z,0D + ca(gy - z~b~) = -MG( t ) .  (19) 

The Rz equation is 

MKz + ~ l ~ i ) [  /~(i)~'(i)] .... g,,,oJ + (kaz + k~,z)Rz + (Caz + c~)Rz 
i-- [ m 0 

= Z j" U" (ro, t ) d A ' o  i' - MaXO (20) 
H 

i=1 

where 

21rpihi e 
m I~ i) a, R~i~°(r)rdr" 

ai 

The q}~ equation is 

I~°{q}2 + 2nw~Gi!., + ([~2] ~ - n~oo~)q2,~ + Jqzb}26.o 

+ a}°6,,, ,(0~ + 2W3by) - a } , i ) 6 , , l ( 0 y  - -  2w3bD 

+ ~,(42~ + ~@2-,,)} 

=f 

( 2 t )  

g(°(r0,  t)w,,,(ro)dAo(i~ (o _ l~i~b}~6,ode(t). (22) 

6 I s o t r o p i c  D i s k / S p i n d l e  S y s t e m s  

In most applications, all N disks are identical and the bearing 
stiffnesses are isotropic, i.e., k,,~ = kay = k, and kbx = kby = kb. 
(In the following, the subscript i or superscript (i) will be 
dropped when it is obvious.) As a result, the complex represen- 
tations 

0 ~ Ox + j O y ,  e =-- R~ + j R y ,  a},i~ =- q}~!-,, - j q ~ ,  (23) 

where j = ~S-1, substantially simplify the equations of motion 
(15) to (22).  In addition, vibration modes with one or more 
nodal circles are not significant in practical applications. There- 
fore, only zero-nodal-circle modes will be retained in the equa- 
tions of motion. In this case, the equations of motion split into 
three sets of matrix equation of motion: one for rigid-body 
rocking of the spindle and the (0, 1 ) disk modes, one for axial 
rigid-body translation of the spindle and the (0, 0) disk mode, 
and one for disk modes with two or more nodal diameters. They 
are explained in detail as follows. 

6.1 Equat ions  for Spindle  Rocking and Disk (0, 1) 
Modes.  The matrix equation coupling the rigid-body rocking 
of the spindle and the disk (0, 1 ) modes is obtained from (15),  
( ! 7 ) ,  (18),  (19),  and (22) with m = 0 and n = _+1 resulting 
in 

Mli~ll(t ) + (Cj + G1)q l ( t )  + (Ks + Q l ) q l ( t )  = f l ( t )  (24) 

where Mi is a Hermitian mass matrix, C~ is a Hermitian damp- 
ing matrix, G~ is an anti-Hermitian gyroscopic matrix, K~ is a 
Hermitian stiffness matrix, Q1 is an anti-Hermitian oscillatory 
matrix, ql is a displacement vector, and f~ is a generalized 
excitation vector. The subscript 1 implies that the quantities are 
related to (0, 1) modes. Moreover, define 

k~z, + kbZ~, G + kb 
, k ~ , -  , k . - - - ,  I~ 0 I~ i) 

w~ = [WCo]~] 2 - w~. (27) 

riJ ~ i~/I~ °, 73 -~ i~/I~ °, rio -~ M/I~ ° (25) 

CaZ2a + CbZ ~ CaZa + CbZ b Ca + C b 
(26) C r r =  i~i) , C, . t - -  i~i) , C t t - -  l~i) 

and 

k,,z] + kbz~, 
k r r -  

are 

. . . .  Q~))r (28) 

Then the matrices and vectors in (24) 

ql = (0, R, QCo~), .q(2) :~01 , 
° a t  a t  "'" 

rio 0 0 ." 

Lit o° o° ol Oolj 
f_ ~cC.. jcr, 0 0 "" i ]  . c. 0 0 "" 0 

C, = 0 ~ 0 "" 0 (30) lZ°°  
i ~ ~ ". 
0 0 0 "" 

3 0 2at 2at "" 2ao'] 
0 0 0 " O| to 12at 0 2 0 "" 

g l  = - j w 3  12.ao 0 0 2 ' "  (31) 

/ • i i ~ ". 
L2ao 0 0 0 "" 

k,  jkrt 0 0 '" i ] [-~kr, k. 0 0 ... 
Ks = 0 w~ 0 '.. (32)  

o o o . . .  oZ.] 

-o o o o "" i 0 0 0 0 ... 
o o ¢  o . . .  O, = --jo..)3 i 0 ? ? ~ ::' O0 (33) 

b ; ; ;  : 
and 

N 

fl = -- ~ l~Jfg(1)(r° ' t )N°l (r°)eJ f i °dA(° l ) )  " I  

f g'm(ro, t)Ro, (ro)eJ~odA~om/ 

(34) 
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6.2 Equat ions  for Axial  Translat ion and (0, 0) Mode.  
The matrix equation coupling the axial translation of the spindle 
and the (0, 0) disk mode is obtained from (20) and (22) with 
m = 0 and n = 0 resulting in 

M0~10(t) + C0q0(t) + K0q0(t) = f0(t) (35) 

where M0 is a symmetric mass matrix, Co is a symmetric damp- 
ing matrix, K0 is a symmetric stiffness matrix, qo is a displace- 
ment vector, and f0 is a generalized excitation vector. The sub- 
script 0 implies that the quantities are related to the disk (0, 0) 
mode• Moreover, define 

k,,z + kbz c.z + Cbz 
k ~ - - - - ,  % ~  (36) 

I~0 I] i) 

Then the matrices and vectors in (35) are 

qo = ( Rz, q oo<l), ,too"(2), . . . .  q ~ ) ) r  (37) 

o bo 
bo 1 0 ' "  

Mo = bo 0 1 "" (38)  
~ ' .. 

o 0 0 ". 

Co = diag [c~, ~, ~ . . . . .  ~] 

Ko = diag [kz:, W2oo, Wo2o . . . . .  cVoao] 

and 

i: ) ! f g( l )(r° '  t)Ro°(r°)dA(°l) 
fo = I~ i - 

g~N)(r0, t )Roo(ro)dA~N)/  

a t ( t )  

(39) 

(40) 

(i °) bo . (41) 

0 

6.3 Equat ions  for (0, 2) Modes  and Above.  The com- 
plex equations governing the disk (0, 2) modes and above are 
obtained from (22) with m = 0 and n = _+2, 3 . . . .  resulting 
in 

0.~, + (~ - 2ncosJ)O(f~ + [coz,,,,- n2w~ -J~nco3]Ol,i)~ 

= f ~,~,l(t) =- - ~ g(i)(ro, t)R,,,,,(ro)ei"&dA(o °, 

i = 1 ,2  . . . . .  N. (42) 

7 G r e e n ' s  F u n c t i o n s  o f  D i s k / S p i n d l e  S y s t e m s  

According to the governing equations derived above, an iso- 
tropic, damped, rotating disk/spindle system manifests itself as 
a damped gyroscopic system. A careful inspection of all [. ]1 
matrices shows that all (0, 1) disk modes are coupled to one 
another only through the rigid-body rocking of the spindle. 
Similarly, an inspection of all [" ]0 matrices show that all (0, 
0) disk modes are coupled through the axial translation of the 
spindle. This special form of coupling suggests that the forced 
response be obtained in closed-form through use of causal 
Green's functions and the convolution integral• 

Take Laplace transforms (denoted by overbars) of (24) and 
(35) with zero initial conditions to obtain 

[s2Mi + s(Ci  + Gi) + (Ki + Qi)]~ii(s) = ~ ( s ) ,  

i = l, 0 (43) 

where Go = Qo -~ 0. Inverting (43) to obtain 

gi~(s) = f i i ( s ) f i ( s )  ~ P,r~(s )~(s ) ,  i = 1, 0 (44) 

where 

P i ( s )  -= sZMi + s(Ci + Gi )  + (Ki + Qi)  (45) 

The convolution theorem of Laplace transforms implies that 
forced responses of (24) and (35) are 

:o qi( t )  = Hi( t  - 7-)fi(7-)d,r, i = 1, 0 (46) 

where Hg (t) ,  i = 1, 0, are known as the causal Green's matrices. 

7.1 Spindle  Rocking  and (0, 1) Disk Modes. For i = 1, 

where 

-D~ El 0 0 " '  
Bi 0 Cj 0 ... (47)  

Pi ( s )  = Bt 0 0 Cj "'" 
: ~ ~ ",. • 

1 0 0 0 "" C d  

and 

A l ( s )  = 771 $2 • (Crr -- jW3~3)S + k,.r (48) 

Bl ( s )  = aos(s - 2jw3) (49) 

Ci(s )  = s 2 + (~ - 2 jw3)s  + con - ja.:3~ (50) 

Di ( s )  = j ( c . s  + k,.t) (51) 

El ( s )  = ~oS 2 + c . s  + k,,. 

A direct matrix inversion of (47) results in 

p ? l ( s )  = p l ( s ) h ~ ( s )  + 1 
F l ( s ) C l ( s ) E i ( s )  E l ( s )  

(52) 

where 

and 

diag [0, 1, 0 . . . . .  0] 

1 
+ diag [0, 0, 1, 1 . . . . .  1] (53) 

G ( s )  

F l ( s )  = (AiCl - NB~)Ei + C1D~ (54) 

I - C , D , I  [ C , D , ~  
P ' ( s )  = I B I . E ' ]  , h ' ( s )  = • ( 5 5 )  

\Bt'Ei / \ B(Ei / 

To reveal the physical meaning of P(~(s ) ,  substitute (34) 
and (53) into (44) and obtain 

= 

• F i ( s ) C i ( s ) E i ( s )  E l ( s )  

\ ~ o l  / 

l lCl(S)  ° t 
0 

g ' ) ( r o ,  s)Ro,(ro)eJ&dA(o 1) . 

g~N)(r0, s ) Rm ( ro )e JeodA {oN) / 

(56) 
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Both resonant and nonresonant motion can occur. Consider the 
resonant motion first. Let pjX>, j = 1 . . . . .  6, be the zeros of 
F1 (s)  satisfying 

6 

F, ( s )  = (ri, - Nao2)ri~ I 'I  (s - pj l ) ) .  (57)  
j=] 

The residue of (56)  corresponding to s = p~L> (k = 1 . . . . .  6) 
is 

Res (p~l>) = ~ h r (S ) f l (S )  p l ( s ) }  , 
L F l ( s ) C l ( s ) E l ( s )  ~=p~> 

where 

k =  1 ,2  . . . . .  6 (58)  

6 

= (r i1  - -  Nag)rio l'-I (P2 '> - P}~>). (59) 
j=l 
j ~k 

According to (58) ,  Res (p~l>) is proportional to Pl (p~l>), which 
implies from (55) that the system response at resonances will 
have nonzero rigid-body rocking 0 = - C i  E~ and translation/~ 
= -CiD~ of the spindle. At the same time, all N disks will 
vibrate in-phase through disk (0, 1) modes with magnitude 
B~E~. This type of resonance is known as unbalanced (0, 1) 
modes (Shen and Ku, 1995), because the inertia force of the 
(0, 1 ) disk modes and the restoring forces from the bearings 
result in a net moment about the centroid causing steady preces- 
sion of the disk/spindle system; see Fig. 1. There are two things 
worth noting. Firstly, the poles p}L>, j = 1, 2 . . . . .  6, imply 
that there are six unbalanced (0, 1 ) modes. Each unbalanced 
(0, 1 ) mode will have a shape similar to that in Fig. 1 but with 
a different frequency. Secondly, the prescribed base motion 
as(t) + jar ( t )  and the applied force g(~)(r0, t ) ,  i = 1, 2 . . . . .  
N, that are not in self-equilibrium can excite the unbalanced 
(0, 1) mode to resonance. 

Likewise, let p}~>, j = 7, 8, be the zeros of C~ (s)  satisfying 

Cl(s)  = (s - p~l>)(s - pal>). (60)  

The residue of (56) corresponding to s = p~L> (k = 7, 8) can 
be found as 

Res (p~l>) = J 
IiC~(p~ l>) 

N i = i  ~ 

g ~ ( r o ,  s )Rol ( ro)eJ~odA ~o i~ C) 0 

g~l~(ro, s )Rm ( ro)eJ:odA ~o ') 

~U>(ro, s)Rol(ro)eJ~odA(oN)/ Js=p~'> 

k = 7 , 8  (61) 

• I I ° 
• • • * I ' J  * 

, 

Fig. 4 Balanced (O, 1) mode with multiple flexible disks and a rigid 
spindle 

where 

(" t C~(p~ '>) -= ~ Cl(s)  ~'=p~> 

8 

= I l l  (p~'> - p ? > )  = 2 p ~  L> + ; - 2 j ~ 3 ,  
j = 7  
j ~k 

k =  7, 8. (62)  

Notice that Res (p~l>) in (61) can be represented as a combina- 
tion of the following N - 1 resonant modes 

(,) o o 

l . . . . . . .  ( 6 3 )  
1 

1 

Each of these N - 1 shapes implies that two adjacent disks 
vibrate with out-of-phase (0, 1 ) disk modes while other disks 
remain undeformed. In the meantime, the spindle undergoes no 
rigid-body rocking nor translation. These N - 1 shapes are 
called balanced (0, 1 ) modes, because the inertia force associ- 
ated with the disks are balanced to zero; see Fig. 4. Also note 
that these N - 1 modes have the same frequency; they are (N 
- 1 )-fold repeated. As a result, any linear combination of the 
modes in (63)  is also a balanced (0, 1) modes. For example, 
disks 1 and 3 vibrating out of phase while other disks remain 
undeformed is a balanced (0, 1 ) mode, because it is a linear 
combination of the modes in (63) .  According to (61) ,  the 
prescribed base motion ax(t) + jay( t )  cannot excite the bal- 
anced (0, 1 ) modes at resonances. Neither can the balanced (0, 
1 ) modes be excited when the applied forces g~)(r0, t) to each 
disk are identical. 

Finally, let p}l), j = 9, 10, be the zeros of E1 (s)  satisfying 

El(S)  = rio(S -- p(91>)(S -- p]~>). (64)  

The residue of (56)  corresponding to s = p}L> ( j  = 9, 10) is, 
(1) (1) in fact, zero. This implies that P9 and Pl0 are not system 

poles. In other words, the spindle will never undergo purely 
lateral r igid-body translation in any resonances. This is because 
the lateral r igid-body translation is coupled to the rigid-body 
rocking and is part of the unbalanced (0, 1) modes. 

When D1 = 0, translation and rocking of the disk/spindle 
system are decoupled. In this case, 

F1 (s) = (A1Ca - NB~)E,  (65) 

and the zeros of EL (s)  become system poles. As a result, unbal- 
anced (0, 1 ) modes only consist of spindle rocking and disk 
(0, 1 ) modes. Also, the number of unbalanced (0, 1 ) modes is 
reduced to four. 

For the nonresonant motion, the response Ct, (s)  can always 
be represented in terms of a linear combination of unbalanced 
and balanced (0, 1 ) modes, because they are linearly indepen- 
dent and form a set of basis. The method of modal analysis, 
however, is not feasible, because the unbalanced and balanced 
(0, 1 ) modes do not diagonalize Ma, C1, G~, K~, and Qi simul- 

3 4 8  / Vol. 64, J U N E  1997 T r a n s a c t i o n s  of the  A S M E  

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



taneously. A much simpler way to find nonresonant response 
is to use (56). According to (56), the prescribed base motion 
ax(t) and ay(t) will excite both unbalanced (0, 1) modes 
through ~ (s) and the rigid-body translation through ff~ + j~y. 
In addition, the force g<i)(r0, t) applied to the ith disk will 
result in combination of the unbalanced (0, 1 ) modes of the 
system through ~(s )  and the vibration of the ith disk through 
f ~ ) ( r o ,  s)Rol (ro)eJ~odA(oi). 

To obtain the causal Green's matrix, expand PT~(s) into a 
partial fraction 

8 
i l l ( S )  = P ? l ( s )  = ~ A}I>  ( 6 6 )  

j=~ s - pit> 

where 

A} '>= / p, (s)h~'(s) }~=pj,>, 

LF;(s)C~(s)E~(s) 
j = 1, 2 . . . . .  6 (67) 

D 

pS(s)fo(s)  
po(s) 

Fo(s)Co(s) 

+ - -  1 

Co(s) f( ° t 
S '(ro ,IRoo(ro .A o 

\ f  g~N)(ro, s)Roo(ro)dA(oN/ 

(77) 

and 

f 
A}~> _ 1 ~diag [0, 0, 1 . . . . .  1] 

C;(p}'>) [ 

N , j = 7,8. 

The inverse Laplace transform of (66) gives 
8 

H,(t)  = Y..<l>_pl'>, /'~.j ¢ J . 

j= l  

7.2 Axial  Spindle Translat ion and (0, 0) Modes.  
= O, 

where 

and 

Po(s) = 
Ii i  "'" Bii] 

Ao Bo Bo 
Bo Co 0 "'" 
Bo 0 Co "" 

~ ".. 

o 0 0 "'" 

Ao(s)  = rloS 2 + Cz~S + k~z 

Bo(s) = bos 2 

Co(S) = ~'~ + gs + ~o.  

A direct matrix inversion of (70) gives 

Pot(S) = P°(s)P°r(s) + ~ diag [0, 1, 1 . . . . .  1] 
Fo(s)Co(s)  Co(s) 

where 

and 

(68) 

(69) 

For i 

Fo(s) = AoCo - NBo 2 (75) 

Both resonant and nonresonant motion can occur. Consider the 
resonant motion first. Let p}O>, j = 1 . . . . .  4, be the zeros of 
Fo( s ) satisfying 

4 

Fo(s) = (% - NbZo) 11 (s - pjO>). (78) 
j= l  

The residue of (77) corresponding to s = p~O) (k = 1 . . . . .  4) 
is 

Res (p~O>) = I P°r(s)f°(s"------------~ po(s)~ , k = 1 . . . . .  4 (79) 
lF[) (s )Co(s)  m . . . .  p~o> 

where 

f 1 

I ds J,=~,~ > 

4 
= (% - Nb~) 11 (p~O> _ p}O)). (80) 

j : l  
j~k  

According to ( 79 ), Res (p ~o>) is proportional to P0 (P ~o> ), which 
(70) implies from (76) that the spindle undergoes an axial translation 

/?z = Co. In the meantime, all disks undergo in-phase vibration 
of (0, 0) mode with magnitude -Bo.  Consequently, the total 
inertia force associated with the disks and the axial restoring 
forces from the bearings result in a net axial force causing the 
axial rigid-body motion of the spindle. This type of motion is 

(71 ) known as unbalanced (0, 0) mode. Note that both the prescribed 
(72) base motion az(t) and applied forces g(i)(ro, t), i = 1, 2 . . . . .  

N, that are not in self-equilibrium can excite the unbalanced 
(0, 0) mode to resonance. Also, there are four unbalanced 
(0, 0) modes. 

(73) Likewise, let p}O>, j = 5, 6, be the zeros of Co(s) satisfying 

Co(s) (s <o> _ = - P5 )(s p(6°>). (81) 

(74) The residue of (77) corresponding to s = p~O> (k = 5, 6) is 

1 Res (p~O>) _ 
/ ,C;(p? ~) 

p0(s) = (Co, - B o  . . . . .  - B o )  v. (76) 

To explain the physical meaning of Po t (s), substitute (41) 
and (74) into (44) and obtain 

Journal of Applied Mechanics 

{ s (i) 
JUNE 1997, Vol. 64 / 349  

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



+ (0 it f ~ '~( ro ,  s)Roo(ro)dA{o 1) 

\ f  ~ N)(r°' ' Z (m s)Roo(ro)d o / Js_p~o , 

k = 5, 6 (82) 

where 

{z } 6 
C;(p?~ ) ~ d Co(s) ~_,,~o, = I ]  (P?> - PJ% 

- j = 5  
j * k  

= 2p~ ° ) +  ~, k = 5, 6. (83) 

Notice that (82) can be represented as a combination of the 
following N - 1 modes 

-'1 , 

_il, 
(84) 

Each of the N - 1 shapes implies that two adjacent disks vibrate 
with out-of-phase (0, 0) modes while other disks remain unde- 
formed. In the meantime, the spindle undergoes no axial motion, 
because the inertia force associated with each of the N - 1 
shapes are balanced to zero. Therefore, they are called balanced 
(0, 0) modes. Again, all these N - 1 modes have the same 
frequency. According to (82),  the prescribed motion cannot 
excite the balanced (0, 0) modes at resonances. Neither can the 
balanced (0, 0) modes be excited when the applied forces 
g(°(ro,  t) to each disk are identical. 

For nonresonant motion, the response qo can always be repre- 
sented as a linear combination of unbalanced and balanced (0, 
0) modes, because they form a set of basis. Again, the method 
of modal analysis is not feasible, because the unbalanced and 
balanced (0, 0) modes do not diagonalize M0, Co, and Ko 
simultaneously. Nevertheless, (77) gives a much simpler way to 
predict nonresonant response. According to (77),  the prescribed 
base motion az(t) will excite the unbalanced (0, 0) mode 
through fo(s) and the disk (0, 0) modes of all disks through 
ffz(s). In addition, the force g(°(r0,  t) applied to the ith disk 
will result in combination of the unbalanced (0, 0) modes of 
the system through fo(s) and the vibration of the ith disk 

through fgV~(ro, A (i) s)Roo(ro)d o .  
To obtain the causal Green's  matrix, expand Pot(S)  into a 

partial fraction 

A} °~ 
Ho(S) = P~I ( s )  = _ p}O> (85) 

j=l  S 

where 

f Po (s) PoT (S_____________) ) 
AJ °) = { } , j = 1  . . . . .  4 

( F ~ ( s ) C o ( s )  J,=pi<°> 
(86) 

and 

1 
A}O> - _ _  

C;(p~ °>) 

{ 1 (;) (1)T}0 
diag [0, 1 . . . . .  1] - ~ 

j = 5 ,6 .  (87) 

The inverse Laplace transform of (66) gives 

6 

Ho(t) = Z AJ °)epT)'. (88) 
j = l  

7.3 Disk (0, 2) Modes and  Above. For disk modes with 
two or more nodal diameters, the solution of (42) is 

Io Ql2(t) = hm,(t - r ) f  ~,~(r)dr (89) 

where 

e p , ,  J __ ep.,, ,t 
hm,(t) = (90) 

Pm,, -- P,,,,-, 

In (90),  p,,,,, and P,,, _,, are the roots of 

Pm,(S) = s 2 + (~ - 2nw3j )s  

+ [co,2,, _ n2co~ - j ~ n w 3 ]  = 0. (91) 

8 A n  E x a m p l e  

This numerical example demonstrates the frequency response 
function and the impulse response function of a disk/spindle 
system with four identical disks under arbitrary rotational speed 
w3. Table 1 shows the properties of the disk/spindle system. 
When the disk/spindle system is stationary, the natural frequen- 

, ( 0 )  cies of the disk (without the bearings and spindle) are woo = 
.(o) = 732.50 Hz. The disk 632.50 Hz, ~o1'(°) = 618.75 Hz, and ~02 

damping coefficient c is assumed to be 2.721 × 10 5 N_s/mm 3 
(0.1 lbf-s/in.3), and the bearing damping coefficients c,,, Cb, 
C,z, and Cb~ are assumed to be 1.756 × 10 2 N-s/mm (0.1 lbf- 
s/in.).  

Consider a concentrated load applied to the fourth disk at r 
= b a n d f l  = 0 d e g w i t h  

g(l~(ro, t) = g(2)(r0, t) = g(3)(r0, t) = 0, 

g(4~(ro, t) = -~5(ro - b I ) f ( t ) .  (92) 

Two types of loading will be considered: impulsive loading 
with f ( t )  ~ 6 ( 0  and harmonic loading with f ( t )  ~ cos cot. 
The numerical simulation demonstrates the response of the 
fourth disk from a ground-based observer at the driving point 
(i.e., r = b and/3 = 0 deg). 

To obtain generalized forces, substitute (92) into (34),  (41),  
and (42) to obtain 

J [b, O, O, O, O, R m ( b ) ] r f ( t )  (93) r, = 7 

1 
fo = - ' ;  [1, 0, 0, 0, Roo(b)]r f ( t )  

1 

(94) 

and 

f 0, 
f o )  = { 

.... ( ( j / I ) R m n ( b ) f ( t ) ,  

i =  1 , 2 , 3  
(95) 

i = 4 .  

For the case of harmonic loading, (44) gives 

J [p71(jw)eJ~,  + P i - l ( - j c o ) e  -s~'] q l ( t )  = 

× [b, O, O, O, O, Rm(b)]  r (96) 

1 
qo(t) = - ~ [Po ' ( j co )e  j~' + P o l ( - j c o ) e  -s~'] 

× [1, 0, 0, 0, Roo(b)] r (97) 
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Table 1 Properties of the disk/spindle system used in the numerical simulation 

Disk Spindle Bearings 

b 47.50 mm zl -3.712 mm 1~ 3.941 kg-mm 2 k,, kb 2.021 X 104 N/mm 
a 16.51 mm z2 -0.9747 mm 1~ 4.739 kg-mm 2 k,,~, kb~ 8,666 X 103 N/mm 
I~ I 8.827 kg-mm 2 z3 1.762 mm m, 3.189 x 10 -2 kg z,, -8.077 mm 
I~ 17.65 kg-mm 2 z4 4.601 mm z~, 5.131 mm 
m 1.371 X 10 -2 kg 

and 

[0, i =  1 ,2 ,3  

Qm,(t)(i) = f (j/21)Rm"(b)[p~'l'(Jco)eJ~' 

L + P~,l,(--jw)e-J~'], 

For impulse response, (44) gives 

J Ht( t ) [b ,  0, 0, 0, 0, Rm(b)] r q , ( t )  = '~ 

1 
q0(t) = - ~ H0(t)[l,  0, 0, 0, Roe(b)] r 

and 

i = 4 .  

QU)Ct~= { ° ~  i =  1 .2 ,3  

....... /1)Rm,,(b)hm,,(t), i = 4. 

(98) 

(99) 

(lOO) 

(101) 

The real and imaginary parts of q~ (t), q0(t), and Q},i~,(t) give 
the generalized coordinates (e.g., 0x and 0y). Then (14) gives 
the lateral vibration response. 

Calculation of the response requires the knowledge of ~ ..... 
Rm,(r), ao, and be at the rotational speed co3. Since the exact 
values of these quantities are unknown, they need to be esti- 
mated in the simulation, co .... is estimated by the sensitivity 
approach (Chen and Bogy, 1992) as 

2 
co,,,n ~ t~'C°)mn + to3A,,m 2 . o )  (102) 

l / in 

where w ~ is the disk natural frequency at zero rotational speed, 
and Amn is the contribution from centrifugal membrane stresses. 
The detail formulation of Am, can be found in Shen and Ku 
(1995). R,,,(r),  n ~ O, are approximated by 

( r -  a) 2, n * 0 .  (103) 
15(b 4 a 4 ) 

R,,,,(r) ~ .V2(b _ a)5(5b + a) 

Notice that R,,,,(r) in (103) are chosen so that they satisfy the 
orthonormality condition (8). Similarly, Roe (r) is approximated 
by 

'~' [ 1~5(b4 --- -a4--) ( r -  a) 2 (104) 
Roo(r) "V4(b - a)S(5b + a) 

and R0o(r) in (104) also satisfies the olrthonormality condition 
(8). a0 and b0 are obtained by substituting (103) and (104) 
into (16) and (21), respectively. 

In this numerical simulation, the following five types of 
modes are retained as a first approximation: unbalanced (0, 1 ) 
modes, balanced (0, 1) modes, unbalanced (0, 0) modes, bal- 
anced (0, 0) modes, and (0, 2) modes. Figure 5 shows the 
amplitude of the frequency response function of the disk/spin- 
dle system at 0.) 3 = 120 Hz from a ground-based observer at 
the driving point (i.e., r = b and/3 = 0 deg). The resolution 
of the frequency axis in this simulation is 0.25 Hz. According 
to the calculated frequency response function, the lowest two 
unbalanced (0, 1 ) modes are at 449.75 Hz and 689.5 Hz. The 
balanced (0, 1) modes are at 521 Hz and 761 Hz. The lowest 

unbalanced (0, 0) mode is at 639.75 Hz. The balanced (0, 0) 
mode is at 652.0 Hz. The lower frequency of (0, 2) disk modes 
resulting from the backward travelling wave is 517.75 Hz. Note 
that the (0, 1 ) balanced modes follow the usual mode splitting 
rule of 2c03 in rotating disks, i.e., 761 Hz - 521 Hz = 240 Hz, 
which is twice of the rotational speed. The splitting of (0, 1 ) 
unbalanced modes, given by 689.5 - 449.75 = 239.75 Hz is 
almost twice of the rotational speed. Theoretically, the 2co3 split- 
ting rule does not apply to (0, 1 ) unbalanced modes, because 
the (0, 1 ) unbalanced modes are coupled motion of the spindle 
and the disks. Therefore, the splitting of (0, 1) unbalanced 
modes cannot be explained by forward and backward traveling 
waves of the circular disks alone, as in (0, 1 ) balanced modes. 
An exact and complete analysis on frequency splitting of rock- 
ing modes is yet to be developed. Finally, Fig. 6 shows the 
impulse response function from t = 0 to t = 0.1 second corre- 
sponding to the frequency response function in Fig. 5. Notice 
that the response is negative when the motion is initiated, be- 
cause the applied force is negative. 

9 Some Remarks 
Although this paper presents a closed-form solution, one must 

realize that the solution is not exact. The approximation appears 
because finite terms in eigenfunctions are retained in order to 
obtain (24) and (35). As a result, (47) and (70) are valid only 
when disk modes with zero nodal circle are retained in the 
approximation. When more disk modes with one or more nodal 
circles are retained, (47) and (70) will take different forms. 
Nevertheless, the off-diagonal terms will be coupled through 
the spindle rocking in the same way allowing the procedures 
of causal Green's function and inverse Laplace transform for 
closed-form solution. 

Although this paper assumes space-fixed load gU)(r0, t )K, 
it is able to handle the moving load problem. For example, if 
a concentrated load is moving along the circle r = b with 
velocity v on the ith disk, then 

Frequency Spectrum, co3=120Hz 
35- 

(0,2) 

/ 

(0,1) B 
/ 

(o,o) 

(O,O)u 

( 0 , 1 )  B 

(0,1)u 

4oo 500 6;0 7;0 8;0 
Excitation Frequency co (Hz) 

Fig. 5 The amplitude of the frequency response function of the disk/ 
spindle system at ~os = 20 Hz 
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0.02 ' 004 0.~8 0.~. 010 
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Fig. 6 The impulse response function of the disk/spindle system from 
t = 0 to t = 0.1 second 

g ( ° ( ro ,  13o, t) = 6(ro , b)6(13o - v t ) .  (105) 

Viscoelasticity of the disks can also be incorporated in this 
disk/spindle model. Let r/(w) be the loss factor of the disk 
material subjected to sinusoidal tensile or compressive strain 
with frequency w. Then the frequency response function can be 
obtained through the same analysis, provided that [W(m"],] 2 is 
replaced by [wl, i,)] 2 { 1 + i~7(w) }. Note that the transient time 
response cannot be obtained this way, because the loss factor 
is a concept of the frequency domain. 

10 Conclusions 

1 Forced response of a rotating, damped disk/spindle sys- 
tem with multiple disks is derived in this paper. Responses in 
the time domain and in the frequency domain have both been 
predicted explicitly in closed form. 

2 Prescribed base motion will excite unbalanced (0, 1 ) and 
(0, 0) modes, but not other modes. 

3 If the applied forces are in self-equilibrum, then the forces 
will not excite the unbalanced (0, 1) and (0, 0) modes to 
resonance. If the applied forces are identical to each disk, the 
forces will not excite the balanced (0, 1 ) and (0, 0) modes 
to resonances. Otherwise, applied forces will excite both the 
unbalanced and balanced modes to resonances. 
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A Comprehensive Energy 
Formulation for General 
Nonlinear Material Continua 
By specialization to the continuum problem of a general formulation of the initial/ 
boundary value problem for every nonpotential operator ( Tonti, 1984) and by virtue 
of a suitable choice of the "integrating operator," a comprehensive energy formula- 
tion is established. Referring to the small strain and displacement case in the presence 
of any inelastic generally nonlinear constitutive law, provided that it is differentiable, 
this formulation allows us to derive extensions of well-known principles of elasticity 
(Hu-Washizu, Hellinger-Reissner, total potential energy, and complementary en- 
ergy). An illustrative example is given. Peculiar properties of the Jbrmulation are 
the energy characterization of the functional and the use of Green functions of the 
same problem in the elastic range for every inelastic, generally nonlinear material 
considered. 

1 Introduction 
The present paper is framed within the context of the studies 

of the so-called "inverse problem" of variational calculus, i.e., 
the problem of finding "extended" variational formulations of 
linear or nonlinear problems with a nonpotential operator. 

A fundamental contribution, which allowed subsequent im- 
portant progress in the field, was given by Gurtin (1964) who 
introduced the convolution product for the variational formula- 
tion of the linear initial-value problem. In subsequent papers, 
Tonti (1972, 1973) emphasized the role of the bilinear form, 
and in particular of the convolutive form, giving a "potentiality 
criterium" in the search of variational principles for nonlinear 
problems. Then Magri (1974) introduced a bilinear, not neces- 
sarily symmetric, mapping for the variational lbrmulation of 
linear initial-value problems. 

More recently Tonti (1982, 1984) established a general 
method for the variational formulation of any nonlinear problem 
on the basis of the choice of an integrating operator. 

In this paper, making a suitable choice of Tonti's integrating 
operator and using the above quoted recent results, a general 
variational formulation is given for a generally nonlinear dift~r- 
entiable operator and, by application to the continuum problem, 
extensions of the classical elasticity principles (Hu-Washizu, 
Hellinger-Reissner, total potential energy, complementary en- 
ergy) are found to the material nonlinear case. 

In the fi'ame of the approaches that derive the solution of the 
nonlinear problem from the superposition of the elastic response 
to the given load and of the elastic response to the unknown 
inelastic strains (see Colonnetti, 1918; Ceradini, 1966; Maier, 
1968, 1969; De Donato and Franchi, 1973; Zarka, 1979; Mura, 
1991; Yu, 1992), the nonlinear constitutive law is suitably de- 
composed into an elastic and inelastic (remaining part) and, as 
Tonti's integrating operator, the inverse of the elastic operator 
(including boundary conditions) is adopted. 

In this way the extended principles proved herein specialize 
to the corresponding elastic ones when the nonlinear part of the 
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constitutive law is ignored. Finally the energy character of the 
functionals is briefly discussed. 

Two of the above four theorems had been established by 
Carini (1996) but using another approach based on Colonnetti's 
principle (Colonnetti, 1918). 

2 Mathematical  Prel iminaries 

In the following, the basic definitions and notations adopted 
tbr the representation both of a general nonlinear problem and 
of the corresponding variational formulations are briefly sum- 
marized. 

Let a nonlinear problem be written in the following form: 

N(w) - P = 0 (2.1) 

where N (the so-called problem operator) denotes any nonlin- 
ear differentiable operator and w is a function or a set of func- 
tions (of a given vector space W) satisfying prescribed linear 
initial or boundary conditions, while P is a known function or 
a set of known functions. The round brackets in (2.1) are cus- 
tomary in the theory of nonlinear operators, just as in the nota- 
tion f ( x )  = 0. When the operator is linear the round brackets 
are omitted. 

Let D(N)  be the domain of the problem operator N, con- 
ceived as a subset of the vector space W; the set of elements v 
= N(w) constitutes the range of the problem operator and will 
be denoted by 2R(N) and conceived as a subset of a vector 
space V. 

As it is well known, if a functional F exists such that its first 
variation 6F is given by 

6F[w] = (N(w) - P, 6w) (2.2) 

where (. , .) is a bilinear nondegeneratefunctional, i.e. (being 
w,w '  e Wandv,  v' e V): 

if (v, w') = 0 for every v c V then w' = 0 

if ( v ' , w ) = 0  for every w E  W then u' = 0 ,  (2.3) 

then the operator N is the gradient o f F  and the functional F is 
the potential of N (and N is called a potential operator). In 
this case the original problem (2.1) is equivalent to the sta- 
tionarity of 
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f~=l ( OT]/ 
F[ w] = F[ wol + (N(r l (k) )  - P) ,  ~-~ dk (2.4) 

=0 

where rl(k) denotes a one-parameter family of functions with 
~7(0) = wo and r/( 1 ) = w. However, for a general nonlinear 
operator N, the original problem (2.1) does not have a varia- 
tional formulation in a classical sense. 

Nevertheless Tonti (1984) showed that a corresponding ex- 
tended variational formulation may be given provided that a 
suitable bilinear form may be found so that an integrating opera- 
tor K,  symmetric with respect to the bilinear form itself, exists. 
In this case the problem(2.1 ) (with N even nonpotential opera- 
tor) is equivalent to the stationarity of the following extended 
thnctional: 

1 F ~ [ w ]  = 5 (N(w)  - 2P ,  K N ( w ) )  (2.5) 

under the assumption that (a) the solution of the problem exists 
and (b) it is unique, (c) D ( N )  is simply connected, (d) the 
Gateaux derivative N'  of N exists, (e) D ( N ' )  is dense in W, 
( f )  the adjoint operator N '*  of N'  is invertible for every w 
D ( N ) ,  (g) K is linear and invertible, (h) D ( K )  D R ( N ) ,  (i) 
R ( K )  c D ( N ' * ) .  

The above results were obtained by Tonti with reference 
to linear homogeneous  boundary conditions. In the following, 
however, reference will be made to nonhomogeneous boundary 
conditions and far less assumptions will be required than the 
original (a) to ( f )  made by Tonti. Besides, it will be more 
useful to rewrite the original problem (2.1) in a form in which 
the linear boundary conditions are explicitly represented, i.e., 

N ( w )  = f  in f~ × T (2.6) 

B w  = g on F × T (2.7) 

where N is the f o rma l  nonlinear operator corresponding to the 
problem operator N while B is the linear operator of the bound- 
ary conditions and T = [ to, t~ ] is the time interval considered. 
For the sake of simplicity in the following, vanishing initial 
conditions are assumed, i.e., 

w ~ 0 on f~ x ( - c % t 0 ) .  (2.8) 

3 P r o b l e m  P o s i t i o n  

Consider a solid which occupies a region f~, in a triaxial 
orthogonal Cartesian reference system x~ (i = 1, 2, 3), with the 
boundary F being F,  and Fp the parts of the surface F where 
displacements and surface tractions are prescribed, respectively. 
The external actions on the solid, i.e., volume forces Fi ( t ) ,  
prescribed displacements ~ (t) on F,  and surface forces/~ (t) 
on Fp, are given for any instant to -< t -< t~ through known 
time functions (all stresses, strains, displacements, and external 
actions for t < to vanishing). The stresses, strains, and displace- 
ments space-time functions ~ri~(x~, t), c~(x~, t)  and ui (x~, t), 
are to be determined in the volume f~ and in the time interval 
T. 

The governing equations of the general nonlinear continuum 
problem in the presence of small displacements and strains, i.e., 
equilibrium, compatibility, direct and inverse constitutive law 
are, respectively (the repeated index summation convention is 
adopted): 

cro, J + F~ = 0 in ft × T (3.1) 

~ronj = I Z  on Fp × T (3.2) 

1 
etj = g(Ui. j + Uj, i ) in f~ × T (3.3) 

ui = ~ on F.  × T (3.4) 

~0 = ~(c;~) in f~ X T ( 3 . 5 )  

c~j = ~(~r/j) in ~2 × T (3.6) 

where • and (I~ are differential or integral or generally nonlinear 
operators and ( .) , j  = 0(" ) /Oxj  while nj are the components of 
the outward normal unit vector to surface F. 

The form (3.5) of the direct constitutive law is able to take 
different kinds of time histories of the strain into account. How- 
ever, due to the differentiability assumption of the operator N 
of Eq. (2.1), the operator ~I, has to be differentiable and then 
only the time histories of the strain amenable to differentiable 
operators • can be considered. This implies, for example, the 
exclusion of the elastic-plastic behavior while the viscoelastic 
case can be fully considered, in this last case the direct constitu- 
tive law (3.5) would have, under the assumption of linearity, 
the following form (see, e.g., Christensen, 1982): 

O-ij(X" ~ t) = Hijhk(X; 0)ehk(X; t) 

f ' OHijhk (X ; t -- ~-) 
+ -~-~---_ ~.-~ C,,k(X; T)dT- (3.7) 

o 
where the time integral represents the time history of the strain 
being Hij~,k the relaxation viscous kernel. 

Let's assume in the following that both the direct and the 
inverse constitutive laws are of the additive type, that is, that 
they can be written splitting each of the above operators if/and 

into two parts, the first of which is representative of the 
linear elastic behavior, while the second (the residual part) is 
representative of the deviation of the inelastic nonlinear behav- 
ior with respect to the linear elastic part. In other words, the 
assumption is that (3.5) and (3.6) can be written in the form: 

O-q = Dohkehk + ~l, .(eij  ) in ~ × T (3.8) 

e 0 = Dij;]kcrhk + ~, . (0"6)  in f~ × T (3.9) 

where Diihk is the linear elastic modulus tensor. For instance, in 
the case of the linear viscoelastic constitutive law (3.7) 

Dijhk(x) = Hijhk(x; 0) (3.10) 

represents the elastic instantaneous modulus tensor, while 

f '  OHohk(X; t -- T)  ~P, ( e~) o O(t  -- "r) ehk(X; "r)d~- (3.11) 

represents the inelastic viscous part. With the above notation 
all the known inelastic linear or nonlinear material behaviors 
(history dependent or not) amenable to differentiable operators 

and (I~ may be considered (such as viscoelastic, viscoelas- 
toplastic, etc.). 

Defining the equilibrium operator E and the compatibility 
(ug, j + u/,~ ) the operator C such that Ecr 0 = ~r~j.j and Cu~ = ~ , 

preceeding (3.1) to (3.6) relations can be summarized in the 
following three and two-field operatorial formulations (with a 
clear meaning of identity operator I and null operator O): 

(a) Three-Field Operatorial Formulation (ui ,  ~u, cro)" 

O ~P(')  • c U = 0 in ~2 × T ( 3 . 1 2 )  
C - I  o-ij 0 

i oo oO , = 
--nj 0 o-ij_] --nj~_] on r .  × T 

(3.13) 

which may be written in the more compact form (in the un- 
knowns ui, e 0, or0): 

Nhw(W) =fi,,,, in f~ × T (3.14) 

Bhww = ghw on F × T (3.15) 
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W 

Bw 

~ _ ~ _ ~  N(w') 
Bw I 

V 

Fig. 1 Mapping of the element w, w '  of the domain D (N) in the vector 
space W with the corresponding elements v, v' of the range R(N) in the 
vector space V relevant to the nonlinear initial/boundary value problem 
(2.6)-(2.7) 

where ~ = [ ui ,  ~ij, c£(/], f hw = [ /~ i ,  0 ,  0 ] ,  ghw : []~i, O, -n j l ,~  i ] ,  
while Nhw and Bhw are the matrices of the operators in the first 
members of Eqs. (3.12), (3.13) and a tilde means transposition. 

(b) Two-Field Operatorial Formulation (u~, au). 

i o - C  ~ ( . )  a0 0 in f~ × r (3.16) 

[o ] on FIx  
nj 0 cr o njlTE on F,, × T '  

i ,e , ,  

Nh,.(w) =.[},~ in f~ × T (3.18) 

Bh,.w =gh,. on F ×  T (3.19) 

where if: = [ u~, ~o], fh,- = [ - F i ,  0], gh,. = [ -/E-, nj~ 1, while 
Nh,. and Bh,. are the matrices of the operators in the first members 
of Eqs. (3.16), (3.17) and a tilde means transposition. 

4 The  Choice of the Bilinear Form 

Let's adopt for both the operatorial formulations (3 .14) -  
(3.15) and (3.18)-(3.19)  the common notation (2 .6 ) - (2 .7 )  
or, in compact form, the notation (2.1). Let's associate the 
following bilinear form (see Fig. 1) to the problem (3 .1 ) -  
(3.6): 

<w,v')=fr{f wf'df~+ f wg'dF}dt (4.1) 

or using the operator N: 

( w , N ( w ' ) ) =  f r {  f w N ( w ' ) d ~ +  f r W B W ' d F } d t  (4.2) 

being w, w' E 23(N) C W and v, v' E R(N)  C V where W 
and V are linear vector spaces which can be defined when the 
constitutive law is given. It is worth noting that the problem 
operator N, in general, is not symmetric with respect to the 
bilinear form (4.2). However, it is always possible to transform 
the bilinear form (4.2) in a new one in order to obtain the 
symmetry of N with respect to the new bilinear form. To this 
aim let the operator N be split as follows: 

N = S + R (4.3) 

where S is the linear elastic part of N, with the same boundary 
conditions of N, and R is the remaining inelastic part ( linear or 
nonlinear) of the original operator without boundary conditions 
(this means that R coincide with its formal operator R). S 
may be interpreted as the operator relevant to the following 
continuum problem: 

Sw' = f  in t~ × T (4.4) 

Bw" = g on F × T (4.5) 

or in compact form: 

Sw" = P (4.6) 

corresponding to the original inelastic generally nonlinear prob- 
lem where the material properties are assumed lineal" elastic. 
This allows to introduce and to understand the meaning of 
operator S J as the linear operator which gives the elastic re- 
sponse of the above solid for any assigned external load P, that 
is 

w '= = S 'P.  (4.7) 

The symmetry of S, and that of S-1, with respect to the bilinear 
form (w, v') (Eq. (4 . l ) ) ,  being w c D(S)  C W, v' C R(S)  
C V, may be easily proved. The above symmetry of S - '  allows 
to recognize the new bilinear form (with respect to which the 
nonlinear operator N will always be symmetric) as the follow- 
ing: 

(S-Iv, v') = (S - 'N(w) ,  N(w') ) .  (4.8) 

Finally it is worth noting that S -~ may be expressed in terms 
of Green functions of the original solid in the elastic range. 

5 A General Principle for Nonlinear Continuum 
Problem 

The new hilinear form (4.1) and the symmetry of the linear 
and invertible operator S 1 are all the elements required, ac- 
cording to Tonti's approach, in order to find extended variational 
formulations of nonlinear problems of the kind (3.14) - (3.15 ) 
or (3 .18)-(3.19) .  Simply choosing 

K - = S  1, (5.1) 

the general extended functional (2.5) becomes 

F,×t[w] = ½ (N(w) - 2P, S-IN(w))  (5.2) 

i.e., being S-LN(w) = S I(S + R)(w) = w + S-JR(w) = w 
+~ , ,  

Foxt[ w]  = 1 < N ( w )  - 2 P ,  w + ~>  ( 5 . 3 )  

where ~ is the solution of the elastic auxiliary problem: 

Sff~ = R(w) in f~ × T (5.4) 

B~ = 0 on F × T. (5.5) 

This solution ¢~ may be represented through the so-called 
Green's functions relative to the considered elastic auxiliary 
solid. Using the formal operators N and B, the functional (5.2) 
becomes 

' frBw(w + ¢')dF f f(w + ~)d~ + ~  
} 

- f r  g(w + ff,)dF} dt. (5.6) 

Theorem. At any solution (if at least one exists) w of the 
problem (3 .1 ) -  (3.6) the functional (5.2) is stationary and as- 
sumes the value 

Journal of Applied Mechanics JUNE 1997, Vol. 64 / 355 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(P, w'). (5.7) F° = -7  

Conversely, any field w (if at least one exists), at which the 
functional (5.2) is stationary and assumes the above value F °, 
is the (or a) solution of the problem. 

Proof Let us write the functional (5.2) in the following 
more expanded form: 

= 1 Fext g (N(w) - P, S I(N(w) - P) )  - ½ (P,  w s) (5.8) 

whose first variation is (due to the symmetry of S -1 with respect 
to the adopted bilinear form (4.1)) 

6F~xt = (N(w) - P, S ~6N(w)). (5.9) 

If w is a solution of the problem (3 .1) - (3 .6) ,  then N(w) = P 
and fiFoxt of Eq. (5.9) vanishes (this means stationarity of F~x~ 
at w). Meanwhile, since w is a solution, F~x~[ w] assumes the 
value F ° (see Eq. (5.8)). The first part of the theorem is proved. 

Conversely, let us assume Foxt stationary at w; this implies, 
since 6F~xt[ w] = 0 and by virtue of property (2.3), one of the 
following three possibilities: ( 1 )N(w)  - P = 0 and 6N(w) e: 
0, (2) 6N(w) = 0 and N(w) - P :z 0, (3) N(w) - P = 0 and 
6N(w) = 0. In cases (1) and (3) w must be a solution and 
from (5.8) the value assumed by the functional at w becomes 
F °. In case (2) w is not a solution but, despite the stationarity at 
w, Fo~t[ w] ~ F °. This proves the second part of the theorem.~ 

Under the only restriction that Z)(S -t) D R(N)  the above 
result is to be considered general, that is, valid for any kind of 
nonlinear differentiable operator N (i.e., operator for which the 
Gateaux derivative N' exists) even relevant to problems for 
which uniqueness and existence of solution may not be asserted. 

A more useful form of the functional (5.6) may be derived 
using the principle of virtual work which gives 

~ R(w)wdf~  = ~ Sw~df~ + f r B w ~ d F  Vt E T. (5.10) 

Using Eq. (5.10) the functional (5.6) becomes 

loads and of the elastic response (the elastic auxiliary problem) 
to distortions corresponding to the inelastic deformations. This 
approach to inelastic problems (the so-called Colonnetti's ap- 
proach) had numerous developments and applications in litera- 
ture, among others, by Ceradini (1966), Maier (1968, 1969), 
and De Donato and Franchi (1973) in elastoplasticity; by Mura 
(1987) in micromechanics (eigenstrain approach); and by 
Zarka (1979) in shakedown analysis (operator split approach). 
However, a larger range of approaches than Eq. (5.1) appear 
available when different choices of the integrating operator K 
are adopted. The wide range of possibilities given by this choice 
would be worth exploring in the authors' opinion. 

6 Extension of  Elasticity Principles to General  Non-  
linear Materials  

On the basis of the above general functional (5.6) or (5.11 ) 
it is easy to derive the following family of functionals of the 
linear elasticity theory extended to the general nonlinear case 
simply by using operators S, R, B defined in Sections 3, 4, and 
5. 

6.1 Extension of Hu-Washizu Principle. In this case the 
unknowns of the problem are the displacements u~, the strains 
c,:/and the stresses asj, and the functional (5~11), where ~ = 
[ ui, cij, air], takes the form 

1 Fhw[W] = ~ (Nhw(W) - 2Phw, W + ~) 

+ ~roTl (ui.j + uj.s))df~ - ~ Fsuid~ + ~ ,, njcrou~dF 

L fr(BW-2g)wdF+ f R(w)wdf~ +~ 

(5.11) 

It is worth noting that if the external actions r = R ( w )  of 
the problem (5 .4 ) - (5 .5 )  are assumed as known, the last two 
terms of (5.11) become constant with respect to w and then the 
functional assumes the more compact form 

which is of the Colonnetti type (Colonnetti, 1918) in the sense 
that the functional is constituted by an elastic part (the first two 
terms) and a term representing the work done by known im- 
posed external actions r = R ( w ) ,  by the corresponding dual 
variables w. 

Remarks. The particular choice of the integrating operator 
K made with Eq. (5.1), substantially transformed the original 
problem into the sum of the elastic response to the external 

When ~r ~ 0 and the external actions are time independent, 
the functional (6.1) trivially specializes in the well-known clas- 
sical Hu-Washizu functional of elasticity. 

6.2 Extension of Hellinger-Reissner Principle. In this 
case the unknowns of the problem are the displacements us and 
the stresses ~sj and the functional (5.11) where ~ = [us, ~s~] 
takes the form 

F,,,.[ w] = ½ (Nh,.(w) -- 2P,,,., w + ~)) 

= ~ (crO.jui + D~)]k ai/Thk -- ~Tq ~ (Ui4 + us.i))df't 

+ !~. uid~'t - ~ njcrousdF + ~ n/rijuidF 
) p u 

+~ 

+ fr , ,NtT'dF - fv,, nJgroc~dF} dt" (6.2) 

When '-P,, -= 0 and the external actions are time independent, the 
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functional (6.2) trivially specializes in the well-known classical 
Hellinger-Reissner functional of elasticity. 

6.3 Extension of Total Potential Energy Prlneiple. This 
extension may be simply derived from the extended Hu-Wa- 
shizu functional (6.1) taking into account that between the com- 
ponents of the vector ~ = [ u~ , e o, ao] the compatibility ( 3 . 3 ) -  
(3.4) and the constitutive (3.8) equations hold. This leads to 

the thnctional 

- f ~ a , d ~ -  fr,  t~a, d P +  fv. na&o~dF) dt. (6.3) 

As in the case of the Hu-Washizu functional, when fit, ~ 0 and 
the external actions are time independent, the functional (6.3) 
trivially specializes in the well-known classical total potential 
energy functional of elasticity. 

6.4 Extension of Complementary Energy Prinelple. As 
in the previous case this extension may be derived from the 
extended Hellinger-Reissner functional (6.2) taking into ac- 
count that between the components of the vector ~ = [ u~, a,~] 
the equilibrium (3. I ) -  (3.2) and constitutive (3.9) equations 
hold. This leads to the functional 

+ (E.(ao)aod~2 + 
2 2 

+ fFl, lT~idF - fr nj&6~.dl--'} dt. (6,4) 

As in the case of the Hellinger-Reissner functional, when ~,. -~ 
0 and the external actions are time independent, the functional 
(6.4) trivially specializes in the well-known classical comple- 
mentary energy functional of elasticity. 

6.5 Remarks. 
l According to the theorem of Section 5, the problem 

(3.1) - (3.6) has at least one solution if and only if the function- 
als (6.1) and (6.3) assume, at least in one of the stationarity 
points, the following value (see Eq. (5.7)) 

F ° =  -g' <P, w,> = ' £ ~ ~u~d~2 

- p~u~dF + u~n~aodF dt (6.5) 

while the functionals (6.2) and (6.4) assume, at the stationarity 
the following value 

F" = -~ ~7 . ~ u~df~ 

+ f r , , l ~ u ~ d F -  f r , , & n i a } d F }  dt. (6.6) 

2 It is worth noting that in the case of the Hu-Washizu and 
of the total potential energy functionals the stresses c3-0, strains 
~0, and displacements t~, of the elastic auxiliary problem are the 

stresses, strains, and displacements of the original problem un- 
der the following assumptions: (a) linear elastic material behav- 
ior, (b) homogeneous boundary conditions, (c) external actions 
given only by the imposed non equilibrated stresses a,~ corre- 
sponding (through the inelastic part fit,. of the constitutive law 
(3.8)) to the real strains e 0 solution of the nonlinear original 
problem. In other words, denoting with a;j' and with e) ° the 
elastic stresses and strains induced in the elastic auxiliary prob- 
lem by the above mentioned stresses a~, the following relations 
hold: 

6- = a~" + a~ { aij' = Do,,ke;i~. 
so so [ so 

~ij  { i j  Ci j  = Ofhkahk 
(6.7) 

Conversely, in the case of the Hellinger-Reissner and of the 
complementary energy functionals the stresses 0-0, strains ~0, 
and displacements R~ of the elastic auxiliary problem are the 
stresses, strains, and displacements of the original problem un- 
der the following assumptions: (a) linear elastic material behav- 
ior, (b) homogeneous boundary conditions, (c) external actions 
given only by the imposed non compatible strains 01} corre- 
sponding (through the inelastic part ~,. of the constitutive law 
(3.9)) to the real stresses a 0 solution of the nonlinear original 
problem. In other words, denoting with a~ ° and with e~" the 
elastic stresses and strains induced in the auxiliary problem by 
the above mentioned strains 0~, the following relations hold: 

e° = e° + 0° ,  c° = Dohkahk (6.8) 
so 

ao = ao a}f = Do.hkei~i~ 

3 It is possible, using the principle of virtual work, to re- 
write the functionals ( 6 . 1 ) - ( 6 . 4 )  in an alternative form 
(allowing to give them an energetic interpretation) of the type 

SR FCxt[ w] = F~'~t[w] + F~t [w]  + F ~ t [ w ] .  (6.9) 

In particular, in the case of extended total potential energy 
functional, the three terms of Eq. (6.9) take the form 

S F,,,,, [ ui ] 

F,,,,.[ u, ] = fitr(eo)(e o - eo)df~d t 

,f,f . 

(6.10) 

where s F,p,,[ u~ ] is the total potential energy functional of the 
elastic problem under the given external actions F~,/~ of the 
original nonlinear problem (2.1), F~,pe [ ui ] is the work done by 
the unknown nonequilibrated stresses a~) = ~,.(e0) for the 
strains (% - e~) where eli is the elastic solution of the problem 
under the external actions/~, Pi, ui, and sR F t p  e [ u i ] is the elastic 
energy of the elastic auxiliary problem (5 .4 ) - (5 .5 )  under the 
external actions 

R ( w )  = a~ = ~ ( e 0 ) .  (6.11) 

In the case of extended complementary energy functional the 
three terms of the functional (6.9) take the form 

F~'[ a°] = f r  ~ ~ ' (ao ) (ao  - a~)d~dt  
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Fig. 2 Example of application of the extended total potential energy 
principle (Eqs. (6.9)-(6.10)). (a) The fixed-end elastic-viscoelastic rod 
considered subject to a uniformly distributed axial load p(f); (b) the 
assumed time load function p(t) (Heaviside function); (c) the elastic 
auxiliary problem with the relevant load /~(t) (see Eq. (7.10)); (d) the 
adopted spatial finite element discretization with n" two-node bar finite 
elements with linear shape functions. 

~ ' fT f Dbl~aU~j~dt F,~ [ ao] = (6.12) 

where s Fce[ c%] is the complementary energy functional of the 
elastic problem under the given external actions F~,/~ of the 
original nonlinear problem (2.1), F~,,[ cr0] is the work done by 
the unknown noncompatible strains 0~ = d),.(au) for the stresses 
( a  0 - a~i) where ~7~) is the elastic solution of the problem under 
the external actions F~,pi,  u~, and SR F,:~ [ a0] is the elastic energy 
of the elastic auxiliary problem (5.4) - (5.5) under the external 
actions 

R(w) = 0}~. = ~/'~(cr~j). (6.13) 

Analogous relations hold for the extended Hu-Washizu and 
Hellinger-Reissner functionals, but are here omitted for brevity. 

7 Illustrative Example 

(a)  Problem Description. As an illustrative example, 
the inelastic rod of Fig. 2 is considered with the aim of empha- 
sizing the possibility of the method to be applied to general 
inelastic (provided that differentiable) constitutive laws such 
as the viscoelastic case and the possibility to allow for a tempo- 
ral Ritz-type discretization for time-dependent problems (i.e., 
using shape functions defined over all the time interval T). In 
Fig. 2 (a )  the rod (clamped at its ends and with constant cross- 
section area A) has a linear elastic behavior with Young modu- 
lus Eo in its first half-length A-B while the constitutive law of 
the second half-length B-C is linear viscoelastic of hereditary 
type as in Eq. (3.7): 
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~i dH(t - ~-) 
or(x; t) = H(0)e(x ;  t) + -d~--- ~-~ e(x; r)d~- (7.1) 

where H(0)  represents the instantaneous elastic modulus, while 
H(t - T) is the relaxation kernel here assumed according to 
the following three-parameter model (Kelvin-Voigt): 

H ( t -  "c)= E~ + (Eo-  E~)exp( tT,~- ) (7.2) 

where Eo ~ H(0) ,  E~ is the asymptotic elastic modulus and 
T* is the relaxation time (see, e.g., Christensen, 1982). 

A constant distributed axial load p(t) is applied at instant to 
= 0 (Fig. 2 (b) )  when all stresses, strains, and displacements 
are assumed to be vanishing; besides T~ T* = 50 is assumed. 

(b)  Functional Construction. The extension of the total 
potential energy principle of Section 6.3 is used in the form 
(6 .9 ) - (6 .10 ) ,  that is 

F,p~ = F,~,c + F,%, + F~,R~ (7.3) 

where, assuming as integrating operator K the inverse of the 
elastic operator relevant to the elastic rod with Young modulus 
equal to E0 over all the field A-B-C, 

1 t O u ( x ;  t )  dx 
FS,,,[ u] = , ~ EoA Ox 

) 

- f] p(t)u(x; t)dx} dt (7.4) 

f f' ( fl dH(t- 7)Ou(x; ~-) dT-) 
F ~,,, [ u] = 12 --~ --- T )  O-----if-- 

Ou(x; t) Ou'~(x; t)) Adxdt (7.5) 
× Ox Ox 

sk l f v f l  ( O~(x;t)) 2 F,~,e[ u] = ~ EoA Ox dxdt (7.6) 

being u = u(x; t) the unknown axial displacement function and 
uS(x; t) the elastic solution of the rod problem (with Young 
modulus E0 over all the field A-B-C) under the axial load p(t). 
It is worth noting that the above quoted (in SR F,I,e ) unknown 
function if(x; t) represents the solution of the following elastic 
a}axiliary problem of the type (5.4)-(5.5) (see Fig. 2(c)) (here 
N is the axial force): 

otis 0 4  
Ox = o; ~ : ~xx; Nr : Eoa~-A~r(e) ( 7 . 7 )  

where 

f l  dH(t - T) 
q,,(~) = ~ -- ~-~ ~(x; ~-)d~. (7.8) 

The Eq. (7.7a) written m terms of the displacement fi(x; t) 
becomes 

Ox 2 - EoA ~x \ Ox/ (7.9) 

which gives the load flU) of the auxiliary problem of Fig. 2(c)  
as the following: 

T r a n s a c t i o n s  o f  t h e  A S M E  
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0 
(7.10) 

In order to express, in the functional sR F,p~[ u] ,  the displacement 
t~ as a function of  the unknown axial displacement u (of  the 
original problem), the auxiliary elastic problem (Fig. 2 ( c ) )  has 
to be solved in closed form using the Green functions that are 
relevant to the elastic structural problem. In particular, for the 
elastic auxiliary rod of the example considered, the Green func- 
tion giving the axial displacement at x due to a concentrated 
unit axial force at ~, is 

(1 - ( ) x / (EoAl )  for x < ( 

G(x,  ~) = ~(l - x) / (EoAl)  for x -> 
(7.11) 

and then 

1/(x; t) = G(x, ~)t3(~)d~. (7.12) 

However ,  when the structural complexity of the elastic auxiliary 
problem does not allow to easily find the above Green functions, 
an alternative approach could be the use of the total potential 
energy principle, that is, the minimization of the functional 

l~,pe[ d] = -~ Eoa Ox dx 

Then, the discretized functionals FS, j f l ] ,  F~,[[J] and 
SR F,p~[fl] of Eq. (7.3) assume the following forms: 

' [ f f7 F~/p~[[3] = -~ fi ~ " lfCI(t) ~ 

"dhd~X) A~M(t)dxdt  1 dhe(x) EoA fl 
dx 

- f l  ~ ~ p°(x; t )M( t )Mh~(x)dxdt  (7.17) 
e 

dh~(X)dx dfi~(X)dx AeM(t)Adxdt I fl 

dh~(x) Out(x; t) Adxdt] (7.18) 
× ~ Ox 

L - d ( x ; t ) f i ( x ; t ) d x  (7.13) 

after a space and time discretization of/~ (that is equivalent to 
the stiffness matrix inversion of the discretized structure of the 
elastic auxiliary problem). 

(e) Diseretization and Problem Solution. Concerning 
the minimization of the extended total potential energy F,p~ of 
Eq. (7.3) relevant to the original problem, the rod is discretized 
with n e two-node bar finite elements with linear shape functions 
hl = 1 - (x - a ' ) / l  ~ and h~ = (x - ae)/l  ~ in the global 
coordinate x (0 -< x <- l ) ,  where a ~ is the coordinate of the 
first node of element e (see Fig. 2 (d ) ) ,  being ns  the total 
number of spatial degrees of freedom of the assemblage. Let 
fie ( t)  = [ u I ( t ), u ~ (t)  ] be the vector of the nodal axial displace- 
ments of  the element e and he(x)  = [ h~(x), h~(x) ] the vector 
of  the two linear spatial shape functions, denoting.with f lU)  = 
[ u i ( t )  . . . . .  u~(t) . . . . .  u,.dt)] and A ~ the vector of the de- 
grees-of-freedom of the assemblage and the element connectiv- 
ity matrix, respectively, the following relations can be written: 

uS(x; t) = l]~(x)u~(t);  u~(t) = A~u(t) .  (7.14) 

In the spirit of Ritz-type (i.e., over all field T) time discretiza- 
tion, each finite element degree-of-freedom uk(t), of the spatial 
discretization, can be written as a function of n t temporal de- 
grees-of-freedom, collected in the vector fik = [/3k,, . . . .  
f l j ,  through n t time shape functions, collected in the vector 
ffak = [mk,(t) . . . . .  mk°,(t)], that is 

uk(t) = ~k(t)13k. (7.15) 

Therefore, after introducing a global unknown vector r ,  collect- 
ing the subvectors ilk, the vector u ( t )  can be written as follows: 

= M ( t ) f l .  (7.16) 

SR 1 F,pe [ fl ] : ~ fl 

[ 

f,,+~ a¢~(~) × EoA ~ ,~ dE AeQ*(t)  
e 

0 2 G ( x ' ( ) d ( )  dxd t ] f l  (7.19) 
x OxO~ 

where 

Qe( t )  = fo d H : ( t _ ~ - )  M(v-)dT- 
d(t  ~-) 

(7.20) 

with He(t T) -= H( t  - ~-) of Eq. (7.2) for elements of  the 
viscoelastic part B-C of the rod and He( t  - ~-) = 0 for elements 
of the elastic part A-B of the rod. It may be easily shown that 
the discretized form F~p~[fl] of the functional F,pe[U] (Eq.  
(7.3)) can be written as follows: 

F,p~[fl] = ½ fiLl3 - f ib  (7.21) 

where L is a symmetric definite positive matrix; this allows to 
find the unknown vector /3  through the solution of the system 
of linear equation 

Lfl  = b. (7.22) 

(d)  Results. For the sake of simplicity, all the spatial 
degrees-of-freedom uk (t) are discretized with respect to the time 
using the same shape functions of exponential type, that is 

fia~ = . . .  = fia,~, 

= [1, e x p ( t / T * ) , e x p ( - 2 t / T * )  . . . .  ]. (7.23) 

Journal of Applied Mechanics JUNE 1997, Vol. 64 / 359 

Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1.40 

1.30 

L20 

O,f 1 .10 

1 .O0 

0.90 
0 . 0 0 l  0.01 0,1 1 10 

t / T '  

Fig. 3(a) 

4 .00  

3.00 

"~" 2 .00  

1 .flO 

0 .00  

- I . 0 0  

2.00  

- 3 . 0 0  

- 4 . 0 0  
0 .001  0 , 0 1  0 .1  1 10 

t / T '  

Fig. 3(b) 

Fig. 3 Comparisons between the exact solution (solid line) of the prob- 
lem of Fig. 2 and the numerical solutions for two (dotted line) or three 
(dashed line) degrees-of-freedom time discretizations. (a) Dimen- 
sionless axial displacement u(I/2; t) of mid section B of the rod versus 
time t iT*; (b) percentage error of u(I/2; t). 

In Fig. 3 some of the numerical results obtained are compared 
with the exact solution with reference to a two or three-degree- 
of-freedom time discretization scheme, always assuming four 
two-node rod finite elements (two elements for both the elastic 
and viscoelastic part, respectively). The plots show a good 
approximation of the exact viscoelastic behavior of the rod, 
over all of interval T despite its wideness (T/T* = 50) without 
the need, as in classical step-by-step methods, of its subdivision 
in many subintervals and without the need of the use of "differ- 
ence-type" integration schemes. 

8 Concluding Remarks 
In this paper, for the inelastic continuum problem, four new 

principles are found despite the absence of a potential (which 
excludes the existence of variational formulations in the classi- 
cal sense). 

It is worth making the following remarks: 

(a) Among the above principles only those with operator 
K ~ S ~ definite positive are minimum principles. This condi- 
tion is fulfilled only by the two one-field operational formula- 

tions (6 .3) - (6 .4)  (extended total potential energy and ex- 
tended complementary energy). 

(b) As already said, the specialization of the constitutive 
law Eqs. (3 .8 ) - (3 .9 )  to the elastic case (~,  ~ 0 or qJ, -= 0) 
in the presence of time-independent external actions leads all 
the functionals to the classical ones of the theory of elasticity. 

Analogously it may be shown that the specialization of Eqs. 
(3 .8 ) - (3 .9 )  to the incremental elastoplastic constitutive law 
leads, despite the absence of the differentiability of the constitu- 
tive law, to well-known classical and more recent variational 
formulations of the incremental elastoplastic problem. This has 
been shown for the total potential energy and complementary 
energy functionals by Carini (1996). 

It is worth emphasizing that finding previous particular cases 
by the specialization of general formulations is not fi'equent 
when dealing with nonlinear variational formulations. On the 
contrary, this happens for the above-mentioned cases by virtue 
of the particular choice of the integrating operator adopted. 

(c) The physical meaning of all the above-found extended 
functionals is always an energy as seen in Section 6. This ener- 
getic character of the functionals also depends on the choice 
made of Tonti's integrating operator K which has always been 
chosen so that KN(w) has the same dimension of w. 

(d) When applied to time-dependent problems the above 
extended formulation allows for the use of the Ritz-type time 
discretization scheme (i.e., with shape functions defined over 
all time interval T), which leads to a good approximation of 
the exact solution as shown in the illustrative example of Sec- 
tion 7. 

(e) A relatively straightforward generalization of the pres- 
ent study should be to materials whose elastic part of the consti- 
tutive law is nonlinear (hyperelastic material). Another possible 
generalization is to the case of large strains and displacements. 
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Simulation of Rough, Elastic 
Contacts 
Frictionless rough contact problems have been studied in great detail by J. A. Green- 
wood and his co-workers. The only thing that actually seems missing is a simulated 
,figure o f  the real contact between two rough bodies. Such a figure will be provided. 
Frictional rough elastic contact, on the other hand, seems to be terra incognita, and 
we intend to explore it. We will use two-dimensional rough bodies, because then we 
can simulate many asperities, and also because three-dimensional does not differ 
very much from two-dimensional in frictional contact, while finally the figures re- 
sulting fi'om two-dimensional are clearer and more transparent as well as more 
realistic. On the other hand, two-dimensional calculations yield only qualitative 
resuhs; for  quantitative results one needs' three-dimensional computations. 

Introduction 

In this paper we will wander through elastic half-space con- 
tact mechanics with rough surfaces. As usual, a distinction will 
be made between frictionless and frictkmal contact problems. 

Frictionless rough elastic contact problems have been studied 
in great detail by J .A.  Greenwood and his co-workers (see 
Johnson, 1985; Greenwood and Williamson, 1966; Greenwood, 
1967). The only thing that actually seems missing is a simulated 
diagram of the real contact between two rough bodies. 

Frictional rough elastic contact, on the other hand, seems to 
be terra incognita, and we intend to explore it qualitatively. We 
will use two-dimensional rough bodies, because then we can 
simulate many asperities, and also because three-dimensional 
does not differ very much from two-dimensional in frictional 
contact, while finally the figures resulting fi'om two-dimensional 
are clearer and more transparent as well as more realistic. 

All calculations were performed on a HP 9000-735, with 
the pl~ogram CONTACT (Kalker, 1990) which was especially 
modified for problems of rough elastic bodies with and without 
friction. 

Similar work has been performed by Carneiro Esteves e.a. 
(e.g., Carneiro et al., 1988). Carneiro concentrates on the de- 
scription and filtering of  the rough surface. In Kalker (1990) 
p. 201 is found a figure due to Carneiro dealing with the pressure 
distribution of frictionless, rough elastic cylinders. 

1 Contact Problems Without and With Coulomb 
Friction 

There are two basic problems in contact mechanics, viz. 

I.l Normal (frictionless) contact problems. In Kalker 
(1990) they are abbreviated by NORM. 

1.2 Tangential (frictional) contact problems which in 
Kalker (1990) are abbreviated by TANG. 

We will presently define these problems more precisely. 

1.1 Normal Contact Problems. The potential contact 
area (A~) is an arbitrarily given region of the contacting surfaces 
encompassing the actual contact. 
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THE PROBLEM READS: 

GIVEN the tangential traction inside A,:, and the profile of 
the contacting bodies at A~:, while at every point of A,. fi'iction- 
less contact conditions hold, 

COMPLETED by classical well supported boundary condi- 
tions outside Ac 

FIND the elastic field inside the bodies and on the surface. 
Tfiis problem is called NORM. 

In this problem statement, two concepts are as yet undefined: 

• Frictionless contact conditions state that outside the contact 
the surface traction vanishes, while inside the contact the normal 
traction component is compressive. 
• Classical boundary conditions prescribe either the surface 
traction or the surface displacement, while well-supportedness 
means that the body as a whole, in its undeformed state, is kept 
rigidly into place. 

The solution to this problem involves the computation of a 
variational inequality (in this case, a quadratic programming 
problem) (Fichera, 1964). From 1972 onwards there has been 
a spate of numerical solutions based on Fichera's variational 
inequality. CONTACT (see Kalker, 1990) solves the problem 
with a variant of an active set algorithm, which reads as follows: 

NORM 

1 Start with an estimate of the discretised contact area. 
2 Compute the normal pressure. 
3 Remove fi'om the contact area all nodes with a non-compres- 

sive normal pressure. 
4 If nodes have been removed by the last executed 3, go to 

2, else go to 5. 
5 Put all nodes at which penetration takes place into the con- 

tact area. 
6 If nodes have been put into the contact area by the last 

executed 5, go to 2, or else READY. 

1.2 Tangential Contact Problems. The tangential prob- 
lem is incremental; a time step is discretized by At ;  t and (t - 
At )  are important instants: viz. the present, and one step in the 
past. 

A Cartesian coordinate system is introdnced of which the 
origin lies in the centroid of the contact area (contact fixed 
coordinate system). 

The bodies are numbered by i, with i = l, 2 and vi (t) is the 
velocity of the body in this coordinate system, at the origin. 

Friction is according to Coulomb. 
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THE PROBLEM READS: 

GIVEN the surface traction at At. at time (t - At),  and the 
normal surface traction in Ac at the time t; 

the velocities v~(t), v~(t - At), i = 1, 2 are given; 
Coulomb contact conditions with given traction bound prevail 

locally in Ac; 
the problem is completed by well-supported boundary condi- 

tions outside Ac; 
FIND the elastic field inside the bodies and on the surface. 

This problem is called TANG. 
One set of concepts have to be explained, viz. the Coulomb 

contact conditions: 

1 Ac, outside the contact area, is free of traction; 
2 inside the contact area, the tangential component of the 

traction is p,, with 

I Pt] -< g where g is the traction bound; 

3 the traction bound is a function of position. Usually it is 
related to the normal pressure p,,, by means of the coeffi- 
cient of friction f,  as follows: 

g = fpn. 

The slip s(x) is defined as the velocity of the upper body 1 
with respect to the lower body 2 at the point x. We define the 
scalar function: w(x) with the property that I w(x)] = ]s(x)l.  
The traction p(x) is the traction exerted on the upper body 1 
at the point x. s(x) should be opposite pt(x), the tangential 
traction. Then we have 

4 

w(x) = 0: no slip, i.e. area of adhesion 

w(x) > 0: slip has the correct sign. Area of slip. 

w(x) < 0: slip has the same sense as p,; it is wrong. 

The problem TANG was solved in a mathematical sense by 
Duvaut and Lions in 1972 (Duvaut and Lions, 1972). They 
proved a variational inequality-minimization problem for one 
incremental step of this problem. 

From 1979 onwards several numerical methods were based 
on Duvaut and Lions, by means of which sophisticated incre- 
mental problems can be solved (complicated shift problems, 
impact, nonsteady-state and steady-state rolling). 

The problem of Duvaut and Lions can be solved numerically 
by the following algorithm (CONTACT, originally from in 
1982, and described in Kalker's book (Kalker, 1990, Ch. 4)). 
It is a variant of a so-called active set algorithm: 

TANG 

1 Given are the traction bound g(x),  the normal pressure in 
the contact area p,,(x), as well as the contact area. These 
quantities do not change during the algorithm. 

2 We start with complete adhesion s(x) = 0 (w(x) = 0 in 
the entire contact area). 

3 Compute the tangential traction, the slip, and the w-parame- 
ter from: 

• In the adhesion area: 

w ( x ) = 0 ,  = s ( x ) = 0  

.for the three unknows w, and p,. Indeed, s can be expressed 
in p, by an equation of the first degree. 

• In the slip area: Solve the three nonlinear equations 

Ipt(x)l = g(x) 

s ( x )  = -w(x)pt (x) /g(x)  

for the unknowns p,(x) and w(x). 

So we find Pt and w in the entire contact area. Note that the 
contact area is found by the algorithm NORM. 

In the slip area equations, the requirement "w > 0" is hard 
to enforce. We drop it temporarily when we solve the slip area 
equations. It is taken care of in Step 5. 

4 Move all x with Ip,(x)l > g(x) from the adhesion area to 
the slip area. If there are such points, go to 3, or else go 
to 5. 

5 Move all x with w(x) < 0 from the slip area to the adhesion 
area. If there are such points, go to 3, or else we are READY. 

2 D i s c u s s i o n  

The algorithm for NORM which was discussed above can 
solve all normal elastic contact problems. The algorithm TANG, 
however, does not seem to be completely reliable for the tangen- 
tial contact problem for which it is intended, which is due to 
the difficulty of solving the nonlinear equations set up in its 
every Step 3. Also, the active set algorithm upon which our 
calculating schemes are built has been proved only for the tran- 
sition of a SINGLE point from one region to the other, whereas 
we apply it using the transition of MANY points simulta- 
neously. 

There is another point to be mentioned in criticism of our 
algorithms. Intuitively one would suppose that a single applica- 
tion of NORM followed by a single application of TANG would 
solve an elastic contact problem. Such a process was indeed 
proposed and executed by Bentall and Johnson in 1967 (Bentall 
and Johnson, 1967). It is, however, an approximative process, 
as was pointed out by Panagiotopoulos in 1975 (Panagioto- 
poulos, 1975), who in the same paper proposed the process of 
alternately executing NORM and TANG, starting with NORM, 
until convergence hopefully occurs. 

There is one set of circumstances in which the Panagioto- 
poulos process introduced above converges after one step and 
so reduces to the process of Bentall and Johnson (1967). It 
was discovered by de Pater in the late 1950s and described in 
his paper (Pater, 1962, p. 33). It is the case of material and 
geometric mirror-symmetry about the plane in which the contact 
area lies. Now, in the technical literature, the contacting bodies 
are often approximated by elastically symmetric half-spaces. 
The first to do so was Heinrich Hertz, the founder of modem 
contact mechanics (Hertz, 1882). This half-space hypothesis 
reads, in the case of elastic symmetry: 

• For elastic calculations, the bodies are approximated by half- 
spaces; the boundary conditions are not changed. 
• The elastic constants Ei, ui of both bodies are equal and 
constant. 

Then it may be shown (de Pater did so) that NORM is 
independent of the tangential traction in Ac. TANG does depend 
on NORM, however, through the traction bound g = fp,, and 
the solution of the complete contact problem may be found by 
executing NORM, followed by performing TANG. A notable 
application of elastically symmetric half-spaces is found in 
wheel-rail rolling contact theory. 

We consider the convergence of CONTACT. 

(a) Elastic-Geometric Symmetry (three-dimensional). 
We made a table of the total contact force for smooth 
wheel-rail theory as a function of the creep. The creep is 
defined in the first paragraphs of Section 5. This table 
contained 114,688 entries. CONTACT contains two meth- 
ods of solution of TANG, a fast one due to Vollebregt 
(1995) and a slow one due to myself (Kalker, 1990). 
To calculate the table, we used Vollebregt's fast solver. 
NORM converged always. TANG failed four times. For 
those entries, we used the slow solver, which converged. 
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(b) 

Concluding, we obtained the complete table, but not with- 
out complications. The failures occurred for slender con- 
tact areas. 
Elastic-Geometric Asymmetry (two-dimensional).  
We made a program for two cylinders covered with 
smooth viscoelastic layers. The cylinders are pressed to- 
gether, rolled over each other, and then for viscoelastic 
analysis, approximated by flat slabs. The cylinders have 
parallel axes, so that two-dimensional calculation by 
CONTACT is possible. 
Many parameter combinations were tried. NORM con- 
verged always, and TANG and the Panagiotopoulos pro- 
cess diverged about once in 100,000 cases. When they 
diverged, it sufficed to perturb the discretization to obtain 
convergence. 
Concluding, NORM converged always, and TANG and 
the Panagiotopoulos process also converged always, but 
not without complications. 

CONTACT has been used to calculate contact problems with 
smooth surfaces. It may also be used to calculate contact prob- 
lems covered by asperities by fully specifying the rough surface. 
Greenwood and his co-workers, see Greenwood and Williamson 
(1966),  specify the rough surface by counting the asperities, 
measuring their height and curvature, and postulating their prob- 
ability distribution function. It seems hard to generate a rough 
surface from these data, and indeed the question arises whether 
this is possible. At any rate, in the present paper we start from 
a given rough surface which is generated by a stochastic Fourier 
polynomial. 

3 Model for a Rough Surface 

It is remarkable that the standard work on rough surfaces 
(Thompson, 1982) does not contain a specification of a random 
process modeling a rough surl~tce. In the more mathematical 
literature Gaussian and inverted chi squared processes are stud- 
ied (Adler, 1981 ). We shall use a model which is a natural 
randomized version of the two-dimensional waviness described 
by Johnson Johnson, (1985, p. 402).  We consider 

M N 

Zasp( x, Y ) =  Z Z a,,,,,y ........ 2 
m = l  i1=1 

x cos \ - - ~ - -  + ~ ..... cos ly + 0 ..... 

on the rectangle [0, 1,1 X [0, /y]. 
The randomness resides in the triples (a ...... ~p ...... 0m,,) which 

for each frequency pair (m, n)  give the amplitude a,,,, which 
is uniformly distributed on [0, A],  and the phases ~p,,,,, and 
0,,,, which are uniformly distributed on [0, 27r]. The three 
components of each triple are independent,  and the triples 
are independent  of each other. The parameter 3,(0 < 'y _< 1 ) 
is a smoothing parameter which attenuates the higher fre- 
quencies. 

The advantages of this random surface model are that it is 
flexible (choice of M, N, and y ) ,  that it encompasses the 
single wavy surface (M = N = 1), that it is bounded (by 
M N A  for all y ) ,  and that it is easy to simulate. A disadvantage 
is that it seems very hard to obtain closed formulae for the 
center line average R, and the height distribution or bearing 
area. However, we do have expressions for the root mean 
square roughness Rq and the surface autocovariance function 
R ( x ,  y ) .  

Obviously the mean height f~  f4" z ( u ,  v ) d u d v  equals O. 
Hence 

1 £c, £c~ 
R ( x , y ) =  lim - / [ z ( u , v ) z ( u + x , v + y ) d u d v  

=l,l~--~ z ( u , v ) z ( u + x , v + y ) d u d v  

M N M N 

= Z Z Y, Y, a,,,,,a,~.,T "+'~"~+'~-4 

t X Q,,,,,~,.,,ffx, I , ) Q  ,~, , , i (3 ,  l,,) 

where 

(27rn~(u + x) ) 
x c o s  \ ~ + ~,,,,, d u  

a n d  Q,',,.,~.,,,,ffy, ly) is s i m i l a r l y  d e f i n e d .  P u t t i n g  t = u/l.,, a n d  c~,r, 
= 2~J~x/ l , ,  w e  h a v e  

Q,,,,,~,,,.,ffx, l,) = cos (27rmt  + ~p,,,,,) cos (27mat + c~,~ + ~p,~,) 

if0' = ~ { cos (27r(m + rh)t + ~p,,,,, + c~,~, + tp,,,~) 

+ cos (27r(m - rh ) t  + ~o,,,,, - ce,~, - ~o,r,,~)}dt. 

Since m + rY~ _> 2, the first part of the integrand always 
integrates to 0, and the second part too, unless m = rfi. We 
obtain that for all n, fi 

Q.,,,,~,,,,,~ = { 0 m ~ Ifi 

COS (~o,,,,, - c~,~ - SO,~,~) m = rh 

We obtain a similar expression f o r  Q,',,,,,,,,,,~, which is nonzero 
only if n = ft. Hence the product of Q,,,,,,,.,,~ and Q,',,,,~,,,.,~ is 
nonzero only if both th = m and fi = n, and we obtain 

R(x,  = £ a,',,,, < ' + ' " - '  cos cos . 
. . . .  , \ - 7 ~ - !  \ z~, / 

PUNCH.  S igma  = s tandard  deviat ion of the random surface [mm]  
7 0 r  ! ! ~ :  ^ .  , ! 
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F i g .  1 c-(Fz/G) diagrams of punch 
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Putting x = y = 0 we obtain the mean square roughness 

~ 2 2 m + 2 n - 4  R~ ~ , a,,,,,3" . 
~=  n= l  

It is noteworthy that both R(x,  y) and Rq do not depend on the 
qOm,, and 0 ..... 

4 Examples:  Frictionless Contact  Problems 

We treat two frictionless contact problems as examples. They 
are three-dimensional.  

Ex. 1 Frictionless Contact of a Smooth, Rigid Flat- 
Ended Circular Punch and a Rough, Elastic Half-Space. 
This is an example of the elastic contact of nominal ly  fiat rough 
surfaces; this problem is described and analyzed by Greenwood 
and Wil l iamson (1966)  and it is found in K. L. Johnson ' s  book 
(Johnson,  1985, Sec. 13.4, p. 411 sqq).  

Data: 

Diameter  circular punch D = 8.97 m m  

Mean number  of asperities # = 1 /mm 2 

Decay factor 3' = 0.8 

Circular punch Gl = El = co 

Poisson ratio of the half-space u2 = 0.28 (steel)  

E-modulus  of the half-space E2 = 1.02e5 N / m m  2 

G-modulus  of the half-space G2 = E2/ { 2 ( 1 + u2) } 
= 40 000 N / m m  2 

Coefficient of friction f = 0 

Variance of rough surface cr 2 = R(0 ,  0)  = R~ 

Standard deviation of rough surface cr = ~aSa 2 = ,/~,~. 

Ex. 2 Frictionless Contact of a Smooth Steel Sphere 
With a Rough, Steel Half-Space. The half-space assumption 
is adopted. 

This is an example of the elastic contact of rough surfaces 
described and analyzed by Greenwood and Tripp (1967) ,  which 
description may be found in Johnson ' s  book (Johnson,  1985, 
Sec. 13.5, p. 416 sqq) .  

Data: 

Diameter of sphere D = 1000 rnm 

Mean number asperities # = 1/rnrn 2 

Decay factor y = 0.8 

Poisson ratio half-space and sphere, 
i.e. body i u~ = 0.28 

G-modulus half-space and sphere, 
i.e. body i 

Coefficient of friction 

Standard deviation of the surface 

Gi = 80,000 N / m m  2 

f = 0  

The results of the two examples are treated concurrently,  so 
that a comparison is easily made. 

Figures 1, 3, and 5 belong to the punch. Figures 2, 4, 6, and 
7 belong to the sphere. 

The approach of the middle surface (5) ,  the true area of 
contact ( c ) ,  and the normal force divided by the combined 
modulus of rigidity (Fz/G) are plotted against each other, where 
the combined modulus of rigidity ( G )  is defined as: 

Combined modulus of rigidity: G = 2G~G2/(Gi + G2) 

In each plot of Figs. 1 -6 ,  five lines are shown (they may 
coincide) ;  these lines correspond to the standard deviations ~r 
of the surface. We  have 

= 0.1 ( rough) ,  0.01, 0.001, 0.0001, 0 (perfectly smooth) .  

Let us first consider the area of the true contact c, plotted 
against Fz/G. Figure 1 relates to the punch, and Fig. 2 to the 
sphere. Concerning the sphere it is seen that three lines with cr 
= 0, 0.0001, 0.001 almost coincide. This indicates that these 
three cr's correspond to an almost smooth surface. The common 
line has the equation 

c = 135(Fz/G) 2/3. 

Indeed, c is the area of the Hertzian contact region, which is 
proportional to b 2 where b is the radius of the contact region. 
F i G  is proportional to b 3, and this is in accordance with the 
above formula. 

The lowest line, marked " r o u g h "  corresponds to ~7 = 0.1. 
We found: 

c = 1 6 ( ~ / G )  

that is, the area of the true region of contact is proportional to 
(Fz/G). 

The equations for ~r = 0 and cr = 0.1 have a sound theoretical 
background. This is not so with the lines a = 0.01, so that a 
curve fit of  them would have no physical meaning.  

The punch, Fig. 1, provides a different picture. Again ~ = 
0.1 yields the equation c = 16(Fz/G), and it is remarkable that 
the factor 16 occurs in both formulae. We  surmise that this 
factor is determined by the size of the potential contact area 
Ac, which is the same in both cases. Even more remarkable is 
the behaviour  of the lines for cr = 0, 0.0001, 0.001. cr = 0.001 
seems to be smooth-behaved only when ~ / G  > 0.32, while c7 
= 0.0001 is smooth-behaved at Fz/G > 0.04. These boundaries 
are well defined, and differ approximately by a factor 10, as 
the corresponding cr's do. We  note, moreover,  that the form of 
the curves for ~r = 0.0001, 0.001, 0.01 are quite irregular, so 
that a curve fit would have no physical meaning. 

We turn to Fig. 7, in which the true region of contact of the 
sphere is shown as a function of (Fz/G). Here also it is quite 
clear that cr = 0.001 is nearly smooth, while ~r = 0.01 appears 
to be rough, and ~7 = 0.1 very rough. We come back to Fig. 7 
later on. 

SPHERE. Sigma = standard deviation of the random surface [mm] 
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Fig. 2 c-(FzIG) diagrams of sphere 
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PUNCH. Sigma = standard deviation of the random surface [mm] 
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F ig.  3 ~ - ( F J G )  diagrams of punch 

In Figs. 3 and 4 the approach of the middle surfaces of the 
bodies cr are plotted against ( F I G ) ;  Fig. 3 relates to the punch, 
Fig. 4 to the sphere. It is remarkable that the lines G = 0.l  for 
sphere and punch almost coincide, and that the 5 's  for a = 0.I 
are considerably larger than for cr = 0. Further, the 5's for 
= 0, 0.0001, 0.001 are much  closer for the sphere than for the 
punch; this behavior  is similar to the c ' s  as a function of ( F J  
G). 

K. L. Johnson (Johnson,  1985) e.g., (13.54)  has introduced 
the parameter  a = cHSo, where 60 is the approach of the smooth 
sphere. When  a < 0.05 the surface may be regarded as smooth. 

The approach of  the smooth sphere 60 is found fi'om Fig. 4, 
~7 = 0. It depends on (Fz /G) .  o is likewise found from Fig. 4. 
Setting (Fz /G)  = 0.32, we find 60 = 0.04, and 

c r = O  ~ a = O . O  
cr = 0.0001 ~ a = 0.00225 
cr = 0.001 = a = 0.0225 
~7 = O.Ol ~ a = 0.25 
cr = 0.1 = a = 2 . 5  

< 0.05: ideally smooth surface 
< 0.05: smooth surface 
< 0.05: smooth surface 
> 0.05: rough surface 
> 0.05: very rough surface 

which is in accordance with what  we found above. A similar 
theory for the punch does not seem to exist. 
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SPHERE. Sigma = standard deviation of the random surface [ram] 
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PUNCH. Sigma = standard deviation of the random surface [mm] 
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Fig. 5 c - f i  diagrams of punch 

We turn again to Fig. 7, in which the true region of contact 
is shown as a functional of the normal  force parameter  ( F I G )  
and the standard deviation of the bodies a.  In particular we 
consider ~72 = le  - 4; this corresponds to a = 0.01, while ( ~ /  
G) runs from 0.16 mm 2 to 0.01 mm 2. The regions of contact 
have a definitely rough look. 

It is interesting to compare this with Fig. 2, the c - (F~/G) 
diagram of  the sphere, where the curve for cz = 0.01 lies between 
the purely smooth curve a = 0 and the very rough curve cr = 
0.1. Also, the ~ = 0.0l  curve is not a straight line in the c - 
( F~/ G ) diagram. 

ff  we consider the cr = 0.01 line in the c - ( F I G )  diagram 
for the punch, however  (Fig. 1), we see that it is an almost 
straight line for ( F I G )  > 0.04. We  conclude that the linear 
proportionality of c and (F.JG)  is strictly only verified for very 
rough surfaces, but for medium rough surfaces (or = 0.01 ) only 
approximately. This holds both for punch and sphere. 

Figures 5 and 6, which are in the c - 5 diagrams for punch 
and sphere, do not add any new information. They have been 
added for completeness '  sake. 

5 Frictional Contact Problems in Rough Bodies 
We had introduced a coordinate system with the origin in 

the centroid of contact (contact  fixed coordinate system), v~ is 
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Fig. 7 True area of contact plotted against (FzlG) and ~r (sphere) 

the velocity of body i with respect to this coordinate system. 
The creep k = vt - v2 is the difference of the velocities, and 
v = -½(v~ + v2) is the rolling velocity, see Fig. 8 (a ) .  

(a)  We speak of a shift when the rolling velocity vanishes: v 
= 0, that is, when v~ = -v2 ,  see Fig. 8(b) .  

(b) We speak of rolling when the rolling velocity does not 
vanish. Note that the creep can vanish (free rolling) (k  
= 0),  can be small (Ikl ~ Ivl), and can be large (Ikl 
of order Iv 1). Free rolling is often considered in the me- 
chanics of undeformable bodies. Small creep is important 
in contact mechanics. It was shown by de Pater (Pater, 
1962) that the traction distribution of rolling is determined 
by the so-called creepage e g k/lvl .  Note that rolling 
with small creep is characterized by I~1 ~ 1. When tel 
is small it may be shown that the contact area of smooth 
bodies is decomposed into a region where the slip of 
the bodies vanishes: The area of adhesion, while in the 
complementary region the slip is nonzero. One may say 
that rolling with small creepage is characterized by the 
presence of an area of adhesion, while rolling with large 
creepage is characterized by the absence of  such an area. 
Rolling with large creep is referred to as "s l id ing."  Slid- 

V l  

' C  c o n t a c t  a r e a  ' 

V2 

Fig. 8(a) 
velocity v 

Velocities vl and v2 together with the creep k and the rolling 

v t  

c o n t  ac15 a r e a  

tH llr rpll till 

-y 2 

Fig. 8(b) The shift v l  = - v =  (rolling velocity v = 0 )  

ing is also often considered in the mechanics of unde- 
formable bodies. It is then also called "Rol l ing with Slid- 
ing."  

5.1 An Example .  Consider two sets of two cylinders with 
parallel axes, see Fig. 9 (a ) .  

All cylinders have the same radius R. The sets are called A 
and B. Set A is smooth, set B is rough. The cylinders of  set A 
are brought into contact, as well as those of set B. A and B 
each form a two-dimensional system. 

When t < 0 the cylinders are at rest. Then all cylinders are 
loaded with a constant moment about their axes, the two upper 
cylinders by M, the two lower cylinders by N, see Fig. 9 (a ) .  
M an N are almost equal; they differ precisely so much that the 
cylinders start to roll. The total tangential force F acting in the 
contact area is shown in Fig. 9 (b) ,  as well as the velocities v~ 
and v2 of the upper and the lower cylinders. 

The traction distribution acting on the contact areas of set A 
and set B perform an evolution with the distance traversed as 
parameter, which is shown in Fig. 10; the smooth set A is shown 
left, the rough set B is shown right. 

The contact area along the smooth cylinders a is six units 
wide. The distance traversed by the cylinders is, reading from 
top to bottom, 0, 1, 2, 3, 8 of the same units; the distance 
traversed between the upper four is easily read off from the 
motion of the highest asperity load of set B, see Fig. 10(b).  

The Cattaneo traction distribution for smooth three dimen- 
sions (Cattaneo, 1938)consti tutes the first tangential contact 
traction distribution in three dimension ever calculated (1938). 
Here, in Fig. 10(a) ,  level 0 of the evolution we have the two- 
dimensional Cattaneo distribution for smooth cylinders. In Fig. 
10(b) level 0 of the evolution we have the analogue for rough 
bodies. This state is reminiscent of the two-dimensional Catta- 
neo distribution. 

The rough body distribution becomes maximal at the edge 
of the contact area. This effect, however, is diminished since 
the spacing of the loaded asperities increases towards the edges, 
so that effectively the traction diminishes near the edges of the 
contact regions. Also, the smooth traction distribution to the 
left has very steep flanges and high peaks near the edges of the 
contact area. This is typical of the no-slip Cattaneo solution. 
Next, the lower levels of the evolution are also very close to 
the no-slip solution smooth or rough. Finally, the asperity trac- 
tion height is of  a random nature, so that no fixed rule may be 
derived from a single instance of the value of the traction. 

The three levels of the evolution below the Cattaneo traction 
distribution have traversed equal distances. The effect of the 
flow of the asperities from right to left is clearly seen. The 
highest peak moves from right to left; at the left edge, the 
asperities flow out of the contact area; new asperities move in 
at the right, and their loading increases initially from right to 
left. 

//f'- -''A "J -~\ 

/ \, / \ 

/. / \ / 

\~-~ . j / /  , \  / 

Fig. 9(a} Two sets of cylinders in contact, A and B; equally loaded 

~ - ~  I - -  

F = N /R  

Fig, 9(b) Tangential forces acting near the contact area 
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Fig. 10 Cylinder sets A (smooth) and B (rough, ~ = 0.1) in transient 
rolling, from Cattaneo (level O) to (approximately) steady-state (level 8) 

The lowest level, at distance traversed = 8, represents an 
approximation of the limiting state of the evolution. For the 
smooth cylinders A this is the two-dimensional steady-state roll- 
ing situation. The smooth two-dimensional steady-state was first 
calculated analytically by F. C. Carter (Carter, 1926) in 1926. 

The rough cylinders B do not reach a true limiting state; at 
the end of the evolution they perform a random walk about the 
stable equilibrium state. This equilibrium state is much like 
Carter's steady-state for smooth bodies, see Fig. 10(a),  lowest 
level. The approximate limiting states of the evolutions of A 
and B are reached at the same distance traversed, viz. eight 
units, or, 1.33 contact widths traversed. 

5.2 (Quas i - )Steady-Sta te  Rolling. The calculation of 
Fig. 10 consists of two parts, viz. the calculation of the initial 
state, followed by the calculation of the nonsteady-state tangen- 
tial contact evolution. In Fig. 10, we use the Cattaneo distribu- 
tion, smooth or rough, for the initial state. 

If one is merely interested in (quasi-)steady-state rolling, it 
is better to start using the so-called direct method, which for 
smooth bodies gives the steady-state of rolling directly. This 
method also converges for rough bodies, but in order to obtain 
an acceptable steady-state it may be safe to perform a few steps 

of the nonsteady-state tangential contact calculation. The results 
is a very fast algorithm, a direct generalization of the calculation 
of steady-state rolling for smooth bodies. 

5.3 Miscellaneous Remarks on the Effect of Asperities 
in Technology. Not long after the publication of Kalker in 
1967, it was observed that the measured creep in the wheel-rail 
system was considerably smaller than that of Kalker (1967). It 
seemed that asperities were at the bottom of this, since, by 
them, the material neat the surface would seem weakened. To 
verify this, it was of minor importance how the asperities were 
formed, as long as this weakening would seem to be present. 

A sinusoidal, two-dimensional surface provided a good 
model. As a result, it was found, however, that the asperities 
had ABSOLUTELY NO effect on the creep. It turned later out 
that contamination was the cause of the effect. 

Another technological problem involving asperities is rolling 
contact noise. D. J. Thompson (Thompson, 1993) investigated 
this phenomenon quantitatively. He confined himself to the nor- 
mal effect of asperities, which, as is well known, have been 
investigated extensively by J. A. Greenwood and his co-work- 
ers. 

Inertial effects are taken into account in the study of elastic 
waves and seismic effects. Elastic waves are studied in combat- 
ing ground vibrations generated by road and rail traffic. Their 
frequency, however, is too small than that they can be caused 
by asperities. 

Finally, asperities play a large, perhaps decisive, role in the 
study of friction and wear. 

6 Conc lus ion  
We have completed our hike through the field of elastic rough 

contacts. 
As to frictionless contacts, we worked in three dimensions. 

We gave a number of pictures of the real area of contact, ranging 
from almost smooth to very rough. Also we gave a simulation 
of the connection between the real area and the approach on 
the one hand, and the roughness and the compressive force on 
the other hand. 

As to frictional contact the piece de resistance is a well- 
documented simulation of nonsteady-state rolling. This was per- 
formed in two dimensions because more asperities could be 
considered, three-dimensional does not differ very much from 
two dimensions, and the resulting pictures are clearer. 
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On Balance and Variational 
Formulations of the Equation of 
Motion of a Body Deploying 
Along a Cable 
The equation of  motion of  a body moving along a vertically hanging cable by deploy- 
ing the cable from the body or retrieving the cable in the body is derived. The 
derivation of the equation is given both by means of  balance principles and a varia- 
tional principle. Due to the fact that this system is not conservative the derivation 
by means of the variational principle requires the introduction of  the Carnot energy 
loss concept. Its explanation is the main objective of  this paper. The motion of  the 
fi'ee fidling fblded string and a horizontally moving folded string modelling a whip 
are treated as exanwles. 

1 Introduction 

Tethered satellite systems (Beletsky and Levin, 1993; Pro- 
ceedings, 1995), are systems of two or more satellites connected 
by one or several thin flexible cables moving on a space orbit. 
An important, but also delicate aspect of their dynamics occurs 
while the length of the deployed cable is changed. For this 
purpose equations of motion have been derived (Kohler et al., 
1978; Beletsky and Levin, 1993) where, in the balance equa- 
tions for the satellites, so-called rocket terms appear. They fol- 
low from the assumption that the changing mass distribution of 
parts of the system, due to deploying or retrieving the cable in 
the satellites, is essentially modeled by a continuous sequence 
of plastic impacts (Beletsky and Levin, 1993). However, a 
careful analysis (Crellin et al., 1995) of the equations given in 
Kohler et al. (1978) and Beletsky and Levin (1993) reveals 
that they are only valid if the motion of the cable at the satellites 
is a prescribed function of time. This, however, is a strong 
limitation of the applicability of these equations since, for exam- 
ple, the use of the equations of motion as derived in Kohler et 
al. (1978) and Beletsky and Levin (1993) is not possible for 
the free deployment of a subsatellite from a space shuttle due 
to the gravity gradient. 

The purpose of this paper is to show that treating the mechani- 
cal model where the motion of the cable at the satellite is not 
prescribed but is itself an unknown, results in a number of 
fundamental problems, especially if a variational formulation 
of the equations of motion is used. Such a variational formula- 
tion is, first, convenient for a complicated satellite system, be- 
cause it also supplies the boundary conditions for the cable, 
that is, the equations of motion of the satellites. Second, it is 
also necessary if one wants to have the equations of motion in 
weak form. The weak form of the equations is required in case 
a finite element discretization of the cable equations is needed 
for their numerical simulation (Steiner et al., 1995). 
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In order to make the essential ideas of this paper as clear as 
possible we will treat a vertically hanging inextensible string 
with a body modeled as a point mass moving up and down 
under the action of a force No acting between body and string 
by retrieving the string in the body or deploying it fi'om the 
body. For the variational formulation of the equations of motion 
of such a system where the change of its mass distribution is 
modeled by plastic impacts, it is necessary to include the Carnot 
energy loss concept (Sommerfeld, 1943; Crellin et al., 1995). 
Its introduction and explanation will be one of the main points 
of this paper. As one illustrative example we apply the Carnot 
energy loss concept to derive the equations of motion of a 
falling folded string which is treated in Hamel (1949) and again 
in Steiner and Troger (1995) making use of balance principles. 
Finally we treat the horizontal motion of a folded string as a 
two-degree-of-flreedom system. This last example has been used 
in the literature (Hamel, 1949; Rosenberg, 1991 ) to explain the 
crack of a whip. 

2 Body Moving Along a Deploying or Retrieving In- 
extensible String 

2.1 Derivation from Momentum Balance Equations. 
We consider the vertical motion of a body with mass re(t) 
hanging at the end of an inextensible string which remains 
always in the vertical position (Fig. I). If, for example, the 
body is moving downward, a proper amount of string is de- 
ployed from the body. By the force No acting between the 
body and the string, depending on its magnitude, either braked 
downward motion and deployment or upward motion and, 
hence, retrieval of the string in the body are possible. The force 
N0 can be considered to model the force acting due to the storage 
or braking mechanism inside the body. We assume that the total 
length of the string is 1. The mass m(t)  of the body, therefore, 
can be written 

re(t) = m0 + #(1 - s,,,(t)), (1) 

where mo is the constant mass of the body without the stored 
part of the string and # is the mass per unit length of the string. 
By Sin(t) we designate the position of the body (Fig. 1 ). Hence 
1 - s,,(t) is the length of string stored in the body. 

The equation of motion of the body can be derived from the 
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linear momentum balance. Designating the linear momentum 
by i ( t )  we have with d / d t  = ( )" 

i ( t )  = (rot + # ( l  - Sm))gm, 

i ( t  + d t )  = (mo + #(1 - Sm(t + dt)))S~m(t + d t ) .  (2) 

The momentum balance yields 

i ( t  + dt)  - i ( t )  = ( m g  - N ) d t ,  (3) 

where N is the tension in the string at the location of the body. 
Expanding the expressions in (2), inserting into (3) and per- 
forming the limit dt  --* 0 we obtain with ( 1 ) 

&'m 
m - -  - Izg,,g,, = m g  - N ,  ( 4 )  

dt  

or more generally 

dL ,  d m  
m - -  = v , . e l - -  - N + rag, (5) 

dt  dt  

usually given in the literature. Here Vrel = V, -- V,,, = --gin, where 
v~ = 0 is the absolute velocity of the string and Vm = g,, is the 
absolute velocity of the body. rh = -#g,,, follows from (1). 
Now No, the force transferred from the body to the string, must 
be related to the tension N in the string. To do this we have to 
distinguish the two different cases of downward and upward 
motion. 

We consider first downward motion. For this purpose we 
write down the momentum balance of the differential string 
element just leaving the body. We obtain 

o r  

i ( t )  = dmf i , , ,  i ( t  + dt)  = 0 

0 - dmsL,, = (No - N ) d t  

a l m s  . 
- - - - S m  = N o - N .  (6) 

dt 

The relation between dm,  and the change of the mass of the 
body follows from the principle of mass conservation 

m ( t )  = m ( t  + dt)  + dm , ,  

from which follows with (1) 

dins d m  
- I.Z$m. (7) 

dt d t  

Inserting (7) into (6) results in 

Sm l g  

Fig. 1 Vertical motion of a body with mass m (t) by deploying or retriev- 
ing a string depending on the size of the force No, exerted from the body 
on the string 

m(t) 

',,.__MI- V~=0 

Sm 

Fig. 2 In deployment the force N is necessary to 
string out of the body which moves with speed Sm 

/ 
/ 
/ 

/ N 

pull the deploying 

N = No - ms,,, = No + ;s,~,. (8) 

We note from (8) that the string tension N must not only 
sustain the force No but must also brake down the element dm., 
from the speed of the body to zero speed. Inserting (8) into 
(4) we obtain for gin(t) > 0 

m~;,, = - N o  + mg .  (9) 

If we prescribe s',,,(t), then from (9) N o ( t )  can be calculated, 
since r e ( t )  is also known. If, on the other hand, N o ( t )  is pre- 
scribed, s , , ( t )  can be calculated using (1). If N o ( t )  is zero we 
have free deployment. 

Now we consider upward motion. For this case N = No. The 
impact of the string element, entering the body, with the body 
is taken care of in the balance Eq. (4). Inserting N = No into 
(4) the equation of motion 

m(t).~';,, = #~,, - No + mg  (10) 

is obtained, which is valid if g,,,(t) < O. 
We note that there is an essential difference between the 

usual rocket problem and the cable problem considered here. 
In both problems a variable mass system is treated. However, 
in the rocket problem mass is ejected from the body whereas 
in the cable problem mass is pulled out of the body. 

2.1.1 D i s c u s s i o n  o f  the DifJOrent Values  o f  N. We found 
that N is different for downward and upward motion. This has 
also been recognized in Crellin et al. ( 1995 ) for tethered satellite 
systems and in Steiner and Troger (1995) for the motion of a 
folded string. 

The difference in N results in the two different sets of equa- 
tions of motion (9) and (10) for downward and upward motion 
and can be best understood if one considers certain special 
motions. To make this important point of our investigation as 
clear as possible we, besides the vertical motion, consider also 
a horizontal motion of the body and the string, for which the 
difference in N is even better to understand. 

1 The Free -Fa l l i ng  Body.  In this case in (9) No = 0 must 
be inserted. We see that N is not equal to zero but given by 
(8). This is the force necessary to reduce the speed of the 
element of the string, which is leaving the body, from the veloc- 
ity of the body to velocity zero. 

2 U p w a r d  M o t i o n  wi th  Cons tan t  Speed.  Then in (10) the 
left-hand side is zero and we see that No not only has to sustain 
the weight but must also accelerate the element of the string 
entering the body to the speed of the body. 

3 H o r i z o n t a l  Mot ion .  A horizontal motion of the body 
without any action of No is considered. 

(a) Deployment. From Fig. 2 follows that for deploy- 
ment a cable tension N ~ 0 is needed to pull the cable out 
of the body. With the momenta 

i ( t )  = dmfim,  i ( t  + dr) = 0 
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m(t) 

v~=O 

dm 

Sm 

y ~ - -  

Y 

Fig. 3 In retrieval the tensionless string moves into the body which 
moves with velocity j/ 

the linear momentum balance for the element dm, is 

0 - dmd,,, = - N d t .  

Inserting dm, = #ds,,, from (7) results in 

N = #s'~,. 

With rh = - #.(m, following fi'om (1), the equation of 
motion of the body (5) with mg = 0 and v~,~l = v~. - Sm = 
- s',,, is 

m(t)S;, = -~f,,,(-#a=m) - N = 0, 

which shows that there is no rocket term in the body equa- 
tion, such that the body performs an inertial motion. 

(b) Retrieval. Since no tension is needed to retrieve the 
cable (the body moves into the cable (Fig. 3)) now N = 
0. In order not to get confused with the signs of Sm(t) we 
introduce for a moment an auxiliary variable y ( t )  = 1 - 
Sin(t) (Fig. 3). Then also re(t)  = m o  + l.*y(t) follows. The 
equation of motion (5) of the body now is 

my = v,.~lm = -y#3 ~ = -#92 .  (11) 

Inserting into (11) s, , ( t )  instead of y ( t )  yields 

m(t)£,, = #.L2,,. (12) 

We see from (11) or (12) that given an initial velocity to 
the body, it will slow down while aquiring more mass from 
the cable. 

2 . 2  D e r i v a t i o n  F r o m  a V a r i a t i o n a l  P r i n c i p l e .  A 
straightforward variational formulation of the equations of mo- 
tion immediately leads into problems because, for the consid- 
ered motion, energy is not conserved. This follows from the 
fact that the velocity of the string at the body is discontinuous. 
For example, in the downward motion the speed of the string 
element leaving the body is instantly reduced to zero and hence 
its kinetic energy is annihilated without gaining another form 
of mechanical energy. This is also related to the fact that the 
rocket equation is based on a series of infinitesimal inelastic 
(plastic) impacts. In S ommerfeld ( 1943 ) (Exercise (Obungsauf- 
gabe) 1.7) it is noted that for motions of this type 

d 
d--t (T + V) ~ 0, (13) 

where T is the kinetic energy and V the potential energy, in 
Sommerfeld (1943), in order to have the equality sign in (13), 
the Carnot energy loss concept is introduced by adding a term 
- W  to (13) by which the inelastic process can be included. 
Hence, instead of (13) one obtains 

d 
7 ( r +  V -  W ) = O .  (14) 

Similar consequences arise for the derivation of the equations 
of motion from a variational principle. We use the variational 

principle of Hamilton Ostrogradskii (Lur'e, 1968) by means of 
which also nonconservative effects can be introduced 

6 'R  = 6S + 6 'Wdt ,  (15) 
o 

where the 6' indicates that there exists no quantity R the varia- 
tion of which is 6R. The action S in the time interval (to, t~) 
in the sense of Hamilton is defined by 

S = Ldt (16) 
o 

with 

L = T -  V (17) 

being Lagrange's function. Forces which cannot be derived 
from a potential are included in the second term in (15) by 
means of the virtual work principle. 

For the moving body problem of Section 2 we write the 
variational principle adding a nonconservative Carnot force Q 
by means of the virtual work principle to obtain 

f q  f q  
6 'R  = 6 ( T -  V ) d t  + (Q - No)6smdt = 0 (18) 

o o 

where 

r = .~l m ~ , ,  g = -mgsm - ~1 Ilzgs,~,. 

Inserting we obtain 

f "  + mg6sm 6' R = ( mL,,6L,, + ~l 6mL2,, 
o 

+ 6mgsm + tzgsm6s,,, + Q6Sm -- No6Sm)dt = O. 

The integration by parts yields with 6m = - # 6 s , ,  

f ' , ( d  l ) 
6 'R  = - 7 ( m g m )  + m g - ~ # g z , , ,  + Q _ N o  6smdt 

o 

+ mgm6s,,, q = 0 .  
to 

Since 6Sin is arbitrary and vanishes at to and h, we may write 
the equation of motion 

~ # X ~ -  mg Q - N o .  mS;,, - ~ = (19) 

The same equation may be obtained directly from the Lagran- 
gian (17), without performing any variation, but simply using 
the classical Lagrange equation for a discrete system 

dt ~ - ~ = Q - N ° '  (20) 

The power developed by the nonconservative forces on coordi- 
nate Sm is by definition 

/~ = S:m(Q - No) (21) 

if H = T + V is the total energy of the system. 
Using the results in Appendix A, with 

[,nl = uls,,,I and (v - u) 2 = g,], 

one obtains for the power developed by the Carnot losses and 
the applied force No the expression 

' ~I~,,,IS~, - gmN0. ( 2 2 )  / q = - 5  
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Comparing the two expressions (21) and (22) fo r /4  one de- 
duces the generalised Carnot force 

1 Q = - ~ p. lg,,,]~'m. (23) 

Hence we obtain by inserting (23) into (19) for the example 
of the falling body: 

* for the downward motion (Y,,, > 0): 

m~;,, = -No + mg 

• for the upward motion (S'm < 0): 

m,t;,, = #s=~. - No + mg. 

These results confirm that our previous balance Eqs. (9) and 
(10) were properly written[ 

3 Example: Equation of Motion of the Falling Folded 
String 

The equations of motion of the falling sharply folded inexten- 
sible string (Fig. 4) is treated in Hamel (1949) in Exercise 
(Aufgabe) 100. However, there it is treated as a conservative 
problem by means of the energy principle and the equation of 
motion derived must be questioned. An equation of motion 
under the assumption of plastic impacts at the fold is derived 
in Steiner and Troger (1995) by means of balance equations. 
Here we derive the equations of motion by means of (20).  The 
system has one degree-of-freedom which we denote by y (Fig. 
4). If the total length of the string is I then the relationship 2x 
= l + y holds. From the expression for the kinetic energy 

1 1 T =  ~ # ( x - y ) ¢ 2  = ~ # ( I - y ) ¢ 2  

and the potential energy 

V = - #g2 (4Ix - 12 - 2x 2) = - ~ (I 2 q- 21y -- y2) 

we obtain the Lagrangian 

I L = T -  V =  a # [ ( 1 -  y)2O 2 + g ( l  2 + 2 1 y - y 2 ) ] .  

The Carnot force Q follows from equat ing/4 = Qy to 

, i m l ( A v ) 2  , i / 4  ; _ ~ = _ z I ~ 9 1 ~  = = _ z u t a h ,  

(24) 

(25) 

given by (A . I ) ,  with y > 0 for downward motion. Hence we 
have 

I . 2  Q = - ~#y  . (26) 

In (25) N has beencalculated f f o m m  = ½ #( l  - y).  

U / / / / / / / / / / A  

x g 

Fig. 4 Free-falling sharply folded inextensible string 

½(g + x + y) 

½ ( e + x - y )  _l 

} (e -  x + y) - ' -  x 

Fig. 5 Mechanical model of a whip with two degrees-of-freedom 

Inserting (24) and (26) into (20) yields 

d~ # ( 1 - y ) p  + ~ # ¢ 2 -  4 # g ( 2 1 -  2y) = - ~#¢2  

o r  

3) '  = g ,  

which has been also derived in Crellin et al. ( 1995 ) and Steiner 
and Troger (1995). This means that the falling part is really in 
free fall as is intuitively expected. When y = l, the velocity of 
the last point (2,~g/) is finite and reduced instantaneously to 
zero. 

4 Example: Equations of Motion of a Simple Model 
for a Whip 

In Rosenberg ( 1991 ) equations of motion of a horizontally 
moving sharply folded string with two degrees-of-freedom are 
derived. They are considered as a model to explain the crack 
of a whip at the instant the folded string extends to its full 
length. The whipping effect is then explained by the infinite 
velocity of the last point. However, as it is shown in Steiner 
and Troger (1995),  they contain again energy conservation as 
in Hamel (1949), since Lagrange's equations without the term 
Q introduced in (20) are used. 

We consider now the motion of the folded string of Fig. 5 
which has the two degrees-of-freedom x( t )  and y ( t )  modeled 
as a nonconservative system as discussed above. The kinetic 
energy is 

I T =  ~ # [ ( / - x  + y ) X  2 + (1 + x - y ) ¢ 2 ] .  

In order to calculate the Qi we have 

I =1 I,~1 =½~ d ( l - x + Y )  ~#lx-¢l 

and 

(v - u) 2 = (~ - ¢)2. 

Hence the Carnot dissipation (A.1) is given by 

1 = - -  I / 4 = - ~ l r h ] ( v - u )  2 a # 1 2 - ¢ l ( x - ¢ )  2. (27) 

Setting 

/ 4 =  Qx2 + Qy¢ 

we obtain fi'om (27) 

1 1 
Q,X + Qy¢ = - a #1:? - ¢1(.~ - 3~)~ + ~ #12 - ¢ l (x  - ¢)¢ 
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or  

/~ Oe - y ) l . e  - y l  
Q x = -  7 

Qy = - ~ ( 3  ~ - 2 ) 1 y - 2 1 .  

Obviously, this decomposition generates generalized forces Q,, 
Q~ that preserve the symmetry in x and y. This procedure illus- 
trates that for a multiple-degree-of freedom system the two Car- 
not forces have to be identified from the single equation for the 
dissipated power. In this example, the symmetry in the problem 
leads to the correct split-up. In general one should choose the 
generalized coordinates such, that the Camot dissipation (27) 
only depends on one of them. For example, using the coordi- 
nates 

~, = ½ ( l - x + y )  and { 2 = ½ ( l + x + y )  (28) 

in (27) only one Camot generalized force, in one variable ~, 

Oe, = -2#1~, I~, 
appears, whereas Q,% = 0. The physical interpretation of the 
coordinate transformation (28) is .obvious from Fig. 5. If the 
linear change of velocities from ( ~ ,  &) to (2, y) is governed 
by, say, matrix A then the change of generalized forces (Q<, 
0) to (Q,, Qy) is governed by the transpose of the inverse of 
A. A short derivation is given in Appendix B. 

Inserting these results into (20) we obtain for £ > y: 

½ # ( l - x  + y ) £ =  0 

[ I ,u(1 + x - y)y = 5 #(2 - 3~) 2 (29) 

and for y > £: 

1 #(I + x - y)y = 0 

I 1 /1,(1 - x + y)£ = g #(.~ - ¢)2. (30) 

The physical meaning of the system of Eqs. (29) and (30) 
is as follows: the faster moving part moves with its constant 
initial velocity, "looses" mass to the slower part and while 
doing so accelerates the slower part. The velocity Vc of the 
centre of mass of the system is set by the initial conditions, it 
remains constant during and after the unfolding motion as there 
are no external forces acting on the string. At the instant, the 
string extends fully, the velocity of the slower part has increased 
to the velocity of the center of mass. For instance, considering 
(30) with x0 = Y0 = 0 and defining 

~(t) = 1 + y ( t ) -  x(t);  ~o = I; 

~'o + Y0 
~0=Y0-X0;  v c - - -  

2 

one obtains a nonlinear differential equation ~ + ~2 = 0 which 
using the identity ~ = ~(d~/d~) (Rosenberg, 1991) can be 
integrated to yield 

y(t)  = y0t 

x(t)  = l + p o t -  ~ + 12. 

When the string becomes stretched, ~ = 21 and the correspond- 
ing time t* is 

3 1 
l *  - -  

2 Yo - 2o 

The corresponding velocity of the string is 

2(t*) = 3~o - ~(t*) = Yo 
l~0 

_ _  - -  U C  ' 

~ ( t * )  

Hence, this model contains only finite discontinuities in velocity 
which go on as long as mass is exchanged between the folded 
parts. We further note that the tension in the whip remains 
bounded during deployment and suddenly drops at the end of 
deployment. It is not obvious that the sonic boom of a whip 
can be explained by this model as the discontinuity exists 
throughout the unfokling motion. Probably the model must be 
extended to a two-dimensional model including bending stiff- 
ness of the string, due to which an acceleration effect of the 
free part can be explained (Schagerl et al., 1997). 

5 Conclusion 

When a one-dimensional continuum moves with discontinu- 
ities in the velocity, the evolution of the discontinuity implies 
energy loss. The equatkms of motion must contain dissipative 
terms modeling this loss of energy. This problem was noticed 
when describing the dynamics of deploying/retrieving tether 
systems and is illustrated here on simple examples. The tradi- 
tional explanation of the sonic boom generated by a whip given 
in the literature is questioned. 
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A P P E N D I X  A 

Energy Loss for Inelastic Impact  

We calculate the Carnot energy loss for the plastic impact of 
an infinitesimal mass I dml having velocity v against a body 
with finite mass M which is moving with velocity u. We assume 
that the impacting mass ] dml is added to the body M at the 
location of the impact. The advantage of the introduction of the 
absolute value I dm I is that one equation for the energy loss will 
be obtained which is valid both for retrieval and deployment. 

The conservation of linear momentum yields 
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(M + Idml)u' = Mu + Idm[v 

where u '  is the common velocity after the impact. Up to first 
order in I din I, this law gives 

u '  = u + (v - u ) - -  

The kinetic energy before impact is 

I dml 
M 

T :  ½1dmlv 2 + ½Mu 2 

and after impact, it becomes 

I T '  = 5 ([dml + M ) u  '2 

so that the kinetic energy loss up to first order in I dml is given 
by 

1 Idml(v  - u) 2. d T =  T ' -  T =  - 7  

We may conclude that the instantaneous power dissipated in 
a succession of infinitesimal shocks is 

= - ½ I m l ( ~ -  u~ ~ < 0. 

We notice that the value of M plays no role in this power 
dissipation. 

If external forces are present, they too contribute to the 
change in kinetic energy. When these forces derive from a 
potential V, we must write 

: - 9 -  ½ I ,~ l (v  - u~ 2 

Hence, the total energy H = T + V of the system is decreasing 
owing to Carnot dissipation 

/~ = - ½ I m l ( v  - u )  = < o .  (A. 1) 

A P P E N D I X  B 

Transformat ion  of  Carnot  Forces 
In coordinates x v = (x~ . . . . .  xn) we designate the generalized 

Carnot forces Q~ = (Qx,, . . . .  Q~,,) and in coordinates ~T : 

(~  . . . . .  ( , ) ,  Q~ = (Q~,, . . . .  Q~,,). Let the transformation 

between ~ and ~ be given by 

= A~. 

Expressing the Carnot dissipation/t by the generalized Carnot 
forces results in 

/- t= Q ~ =  Q~A 'x = Q~x. 

Hence we obtain 

Q~ = Q~A 

o r  

Qx = (A-i)TQ~. 
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Energy Release Rates for an 
Interface Crack Embedded in a 
Laminated Beam Subjected to 
Three-Point Bending 
Asymmetric three-point bending of  a layered beam with an interface crack is analyzed 
on the basis of  the classical beam theory. Axial forces induced by bending in the 
parts' of  the beam above and below the delamination are determined by regarding 
the cracked part as two lapped beams hinged at both ends. The compliance and the 
energy release rate are then derived. Numerical analyses based on the finite element 
method are carried out, which show that delamination growth occurs in mixed mode, 
i.e., both the normal separation (mode I) and mutual sliding (mode II) of  the crack 
surfaces contribute to the fracturing process. Finally the decomposition of  the energy 
release rate into mode I and mode II components" is made by combining the analysis 
of  the energy release rates by Toya (1992) and the two-dimensional linear beam 
solutions by Suo and Hutchinson (1990). 

1 Introduction 

Delamination, or interface fracture, of a multilayered com- 
posite laminate is one of the major problems in the technology 
of structural composite materials and hence many literatures 
have been presented on the subject. In the theoretical investiga- 
tion of the delamination of laminated beams, the classical Euler- 
Bernoulli theory (simple beam theory or strength of materials 
theory) has been found to be effective. For example, Kanninen 
(1973) derived the compliance of a double cantilever specimen 
based on the theory of beams on an elastic foundation. The 
energy release rate was then obtained by differentiating the 
compliance by crack length. Ashby et al. (1985) and Charalam- 
bides et al. (1989) analyzed a notched beam in which delamina- 
tion spreads parallel to the beam axis from the notch root. The 
strength of materials approach has been also adopted for the 
end-notched laminated beams subjected to either three-point 
bending (Okusa, 1983a) or to unitbrm temperature change 
(Toya et al., 1992). 

In practical application of layered plates or beams, delami- 
nations are often observed to arise from, e.g., low-velocity nor- 
mal impact and from manufacturing errors resulting in poor 
bonding. The situation where such a local delamination grows 
as a consequence of local buckling resulting fi'om compressive 
loads parallel to layers has been considered by a number of 
investigaters (e.g., Chai et al., 1981; Kachanov, 1988; Madenci 
and Westman, 1991). However, except the work of Maikuma 
et al. (1989), it seems little attention has been paid to the 
case where the embedded interface crack grows under bending 
moments. 

In this paper we consider a model layered beam with an 
interface crack that is subjected to asymmetric three-point bend- 
ing (cf. Fig. 1 ) on the basis of the classical beam theory. Axial 
forces are induced by bending in the parts of the beam over and 
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below the interface crack, the determination of which becomes a 
key to the solution of the problem. These axial forces are deter- 
mined by regarding the delaminated beam as two lapped beams 
hinged at both ends. The compliance and the strain energy 
release rate are then derived (Section 2). Finite element compu- 
tations are carried out to show the validity of the approach 
based on the simple beam theory (Section 3). The numerical 
analyses also reveal that delamination occurs in mixed mode, 
i.e., both the normal separation of the crack faces (mode I) 
and mutual sliding of the crack faces (mode lI) contribnte to 
fracturing process. In Section 4, the decomposition of the energy 
release rate into mode I and mode 1I components is made by 
combining the recent analyses by Toya (1992) concerning the 
components of the energy release rate of an interface crack and 
the analyses by Suo and Hutchinson (1990) for a split-beam 
element subjected to general loading conditions. 

2 Theory 
We consider a local delamination as shown in Fig. 1. The 

model beam is formed by bonding two isotropic and linearly 
elastic rectangular beams having the same length I and width 
b. Thicknesses and Young's moduli of the two layers are h~ 
and E~ for the upper strip and h2 and E2 for the lower strip, 
respectively. An interlaminar crack with length c is assumed to 
be embedded, the ends of the crack being distant a/. and al~ from 
the left and right-hand supports, respectively. A concentrated 
force P is applied at the distance d from the left support. The 
case when the point of load application lies on the cracked part 
(i.e., al, -< d -~ l - a~) is considered first. As is shown in Fig. 
1, the position of load application is distant cc from the left- 
side edge of the crack and CR from the right-hand edge (c = cL 
+ cn). We imaginatively cut the beam at points B and D to 
isolate three elements AB, BD, and DF. We regard the cracked 
part BD as two lapped beams hinged at both ends (of. Fig. 2). 
The action of the two hinges is to produce a compressive forces 
- Z  for the upper beam and extensional force Z for the lower 
beam, the magnitude of which is later determined from the 
compatibility condition for the longitudinal deformations of 
both beams. 

Thus, by further imaginatively cutting the beam at the point 
of load application and by replacing the hinges with forces ±Z, 
we have flee-body diagrams for the upper and lower strips as 
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Fig. 1 
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Three-point bending of a laminated beam containing an interface 
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Fig. 3 Free-body diagram for the interval BC 

shown in Fig. 3, where the mutual beam reactions q ( x )  is also 
taken into account. We assume that no frictional forces act on 
contact surfaces, so that q ( x )  acts normal to the crack faces. In 
the figure, shearing forces c~FR and ee'Fc, bending moments 
M~B and Mlc ,  and compressive forces Z are applied at the ends 
of the upper beam. Shearing forces flFB and f l ' F c ,  moments 
M2B and M2c, and extensional force Z likewise act for the lower 
beam. Here c~, cd, /3, and /3', are numerical constants which 
satisfy the condition c~ + fl = 1 and a '  + / 3 '  = 1. The conditions 
of equilibrium lead to following constraints: 

where 

F~ = Fc = P d ' / l ,  

MiB + M2B = Pd'aL/1,  

Mlc  + M2c = P d d ' / l  - Z h / 2 ,  (1) 

d '  = 1 - d, h = h i  + h2. (2) 

The bending moments about the point x on the neutral axes of 
the upper and lower beams, Mxl and Mx2, are given as follows: 

£ Mxt = Mi + e~Pd'x/ l  + Zy + q ( x ' ) ( x  - x ' ) d x ' ,  (3) 

L M~2 = M2 + f l P d ' x / l  - Zy - q ( x ' ) ( x  - x ' ) d x ' ,  (4) 

where y is the deflection which is assumed to be identical for 
both beams, and 

Ml = M i B  -- Z h l / 2 ,  M 2  = M2B - Z h 2 / 2 .  (5) 

The equations of deflection are 

D l d 2 y / d x  2 = - M x l ,  D2d2y /dx  2 = -M~2,  (6) 

with D~ (i = 1, 2) being flexual rigidity of the upper and lower 
beams, respectively, i.e., D~ = E~L, L = bh~/12,  ( i  = 1, 2). 
Adding Eqs. (6)t and (6)2, we have the deflection related to 
the point B (x = 0) as follows: 

Y~c = & x  3 + $2 X2 -~ s 3 x ,  (7) 

where 

s, = - P d ' / ( 6 D I ) ,  (8) 

s2 = - ( P a L d ' / l  - ½ Z h ) / ( 2 D ) ,  (9) 

B D 

+ 
Fig. 2 Modeling by hinged lapped beams 

with 

D = D~ + D2. (10) 

The distribution of the reactive force is obtained as 

q ( x )  = - Z d 2 y / d x  2 = - Z ( 6 S l X  + 2s2). ( 11 ) 

Similarly, by taking the coordinate x '  which is measured 
positive leftward with the origin at D, we have the deflection 
YCD for the interval CD; 

Yco = s {x  '3 + s t y / 2  "~ S I X ' ,  12) 

where 

s; = - P d / ( 6 D l ) ,  

~' = - ( P a R d / l  - ½ Z h ) / ( 2 D ) .  . 2  

13) 

14) 

For the bonded elements A B  and D F ,  we have 

YA~ = - P d ' x 3 / ( 6 D ' I )  + J i x ,  1.5) 

YDF = - P d x ' 3 / ( 6 D  ' l)  + J~x ' ,  16) 

where D '  is the flexual rigidity of the composite beam, the 
expression of which is given in Appendix A. The four unknown 
constants, s3, s~, Jl ,  and Jl  are determined from the continuity 
conditions for the beam inclination and deflection at the points 
B, C, and D. They are given in Appendix B. 

Finally, we determine the axial force Z from the condition 
that the length of the fiber along the upper surface of the crack 
should be equal to that along the lower surface. This condition 
leads to 

fo £ ~L e ldx  + ~ e l d x '  Zc 
Elhlb  

= 'L e2dx + e~dx'  + Ezh2----b ' ( 17 )  

where, eL and e2 denote the longitudinal strains of the upper and 
lower crack surface in the interval B C  and ~[(i  = l,  2) denote 
those partinent to the interval CD; 

1 d2yBc e~ = 1 dayco 
ei = ~ ( - l ) " h i  dx 2 , ~ ( - l ) i h i  dx,2 

(i = 1 ,2 ) .  (18) 

Substitution of (18) into ( 1 7 )  leads to 

Z h f D o  

P c ( 4 D  + h2D0) ' 
(19) 

where, 

f =  [ d ' ( 2 a c  + c~.)cL + d(cR + 2ak)c~] / l ,  

Do = b / [ ( E , h t )  i + (E2h2) t]. 

(20) 

(21) 
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By using the relation that can be readily verified, 

D '  = D + hZDo/4 ,  (22) 

Eq. (19) may be rewritten as 

Z / P  = f ( l  - D / D ' ) / ( h c ) .  (23) 

The deflection 6 at the point of load application is given by 

= YAZCl ...... + Yt~'I.,-,.~ = P¢I~, (24) 

where 

¢~ = _ 3l- 5 - _ 

l _ f 2  + _ _  (25) 
4 c  31D 

is the compliance of the cracked specimen. 
Since the development of delamination is nothing more than 

the growth of the interface crack, the energy release rate be- 
comes the most important parameter. For crack extension under 
constant force condition, the energy release rate at the left-hand 
crack-tip is given by 

G~L 2b dcc 8~- - - , (26) 

whereas the energy release rate at the right-hand crack-tip be- 
comes 

For example, if CJCR > d / d ' ,  then G, L is greater than G,, e and 
crack extension at the left-hand tip occurs while the right-hand 
crack-tip remains stationary. 

In the case where the point of load application lies outside 
of  the cracked part of the beam ( d  -< aL), we have in a similar 
way as the foregoing analyses the axial force, the compliance 
and the energy release rates as follows: 

Z _ d 1 - ( c +  2a1~) (28) 
P hl 

~b = 1 - ~  - + 3D'----~' (29) 

G,, L = G,, R - 8bl-----~ - . (30) 

We see that when the point of load application is outside of the 
cracked part, both the compliance and the energy release rates 
are dependent only on the crack length but independent on the 
location (al. or ae) of the crack. It is expected that if the onset 
of delamination is stated as G = G,. with Gc being a material 
constant, then unstable crack extension occurs simultaneously 
at both ends of the crack. 

Maikuma et al. (1989) considered the simplest case where 
d = d '  = 1/2, cl~ = cl. = c / 2 ,  hi = h2 = h / 2 ,  El = E2. It is 
readily checked that in this case Eqs. (25) and (26) reduce to 
their solutions. 

In passing, we note the statement by Suo and Hutchinson 
(1990) that the energy release rate for an interface crack sub- 
jected to pure bending moment (four-point bending) is identi- 
cally zero. Their conclusion is also confirmed by our present 
method. We can readily check that the compliance of the beam 

containing an interface crack coincides with that of an un- 
cracked beam irrespective of the length of the crack. Hence, 
we are also led to the conclusion that the energy release rate is 
zero for four-point bending. 

From ( 11 ), the beam reaction in the interval B C  becomes 

q ( x )  = ( Z / D ) [ P d ' ( x  + aL) / l  - Z h / 2 ] ,  (31) 

for the case where the load point lies on the cracked part of the 
specimen. Hence, if 

a '  ~ ( Z h l ) / ( 2 P d ' )  - aL (32) 

is positive, then q ( x )  takes negative values in the interval 0 -< 
x -< a ' .  This means our solution is not consistent with the 
basic assumption that crack surfaces come into contact with 
one another everywhere and hence q ( x )  should be positive. For 
example, for the case of d = d '  = I /2 ,  CR = CL = C/2, h~ = h2 
= h / 2 ,  E~ = E2, we have 

Z / P  = 3 ( 2 l -  c ) / ( 1 6 h ) ,  a '  = 5 c / 1 6 -  1/8. (33) 

In this case q ( x )  becomes negative near the crack-tip if c is 
larger than 21/5. However, as will be seen in the next section, 
in spite of this inconsistency in the sign of q (x),  the axial force, 
the compliance and the energy release rates predicted from the 
foregoing analyses agree well with the numerical results based 
on finite element method. In other words, the inaccuracy of 
q ( x )  does not gravely affect the other physical quantities of  
interest. 

It is also noted that the negative q ( x )  implies the normal 
separation of the crack faces. Hence we expect that the delami- 
nation process generally occurs in mixed modes, in which both 
the normal separation (mode I) and mutual sliding of the two 
faces of the crack (mode II) contribute to the fracture of inter- 
face. In this case we can no longer regard G,t. or Gc,~ as pure 
mode H energy release rates. The decomposition of these total 
energy release rates into mode I and mode II components will 
be discussed in Section 4. 

3 A n a l y s e s  by Finite  E l e m e n t  M e t h o d  ( F E M )  

In this section we compare the theoretical results with those 
from FEM. The FEM program developed by Okusa (1983b) is 
utilized, by which mutual contact of crack faces may be readily 
analyzed. In this program, a rectanguler four-nodes element, 
displacement function of which contains a term xy  ( x  and y are 
coordinates parallel to sides of  the rectangle), is used. 

Materials chosen are acrylic resin with Young's  modulus of 
E~ = 2.94 GPa and Poisson's ratio of ut = 0.345 for the upper 
beam and aluminum with E2 = 73.5 GPa and u2 = 0.35 for the 
lower beam. We fix the beam dimensions as 1 = 300 ram, b = 
30 ram, and aR = 50 ram, and calculate the axial forces, the 
compliance, and the energy release rates as functions of the 
crack length c for several combinations of  the thicknesses h~ 
and h2. These thicknesses are chosen between 1 ram, 5 ram, 
and 10 ram. The unit load P = 1N is applied at the center of the 
beam. Calculations are performed under plane stress condition. 

After checking the accuracy by applying to a homogeneous 
untracked slender beam we adopted discretization by five rect- 
angular elements in the y-direction and 150 elements in the x- 
direction as a basic mesh division for each layer of the model 
composite beam. Mesh sizes are made smaller towards the crack 
tips, and the mesh with ~ size of  the basic rectangle is used in 
the small regions surrounding crack-tips. A schematic diagram 
of the finite element discretization is shown in Fig. 4. 

Calculations are first made by assuming the mutual contact 
of the upper and lower crack surfaces. If tensile nodal forces 
are detected for nodes on the crack faces, the condition of 
contact is relaxed at these nodes at the second calculation. This 
procedure is repeated until no tensile nodal forces are detected 
at all nodes on the crack faces. We found that in many cases 
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Fig. 4 Schematic diagram of the mesh division 

normal separation of the crack faces occurred near the crack- 
tips, and hence the delamination occurred in mixed modes. 

To obtain the components Gt and Gn of the total energy 
release rates, the finite element crack closure simulation (Ry- 
bicki and Kanninen, 1977) is performed. In this method, the 
nodal forces required to close the virtual crack extension, Aa ,  
which is taken as the width of the element adjacent to the 
crack-tip, are computed using the local compliance method (cf. 
Armanios et al., 1986). Both components of the energy release 
rate are then given by 

1 Y A v  1 X A u  
G i -  2 2xa ' G i t -  2 Aa ' (34) 

where g and X are the normal and tangential nodal forces re- 
quired to hold two nodes together at the crack-tip, and the 
quantities Av and Au are the normal and tangential relative 
nodal displacements, respectively. The total energy release rate 
is given by the sum of both components. 

The theoretical curves and numerical results for the axial 
force Z and the compliance cb are shown in Figs. 5 -6 .  These 
graphs show good agreement between the theory and numerical 
results, confirming the accuracy of the analyses based on the 
classical beam theory. 

The energy release rates and their mode I and II components 
at the left and right-hand tip are shown in Figs. 7 and 8, respec- 
tively. (In Fig. 7 (a ) ,  only the total energy release rate is shown; 
in this case there is no Gt component due to the perfect contact 
of the crack faces near the tip and hence G equals to Gn.) 
Again, we observe good agreement between the theory and 
numerical results. Equation (26) predicts that the energy release 
rate becomes zero when c,dc = (d ' /1)  ~2, (c / l  = 0.467 in the 
present case). This prediction is well confirmed in Figs. 7 ( a ) -  
(c).  It is also noted that at these points the mode of crack 

growth changes from pure mode II to mixed mode type. We 
also see from Fig. 8 (a)  that G, is negligibly small in comparison 
with G, .  Thus, it is concluded that for a relatively thick upper 
layer, the mode of delamination will occur in predominantly 
mode II for both crack tips. 

4 M o d e  Part i t ioning  of  the Energy  Re lease  Rate  

For the study of the criterion of the mixed mode fracture, it 
is desirable to separate the energy release rate into mode I and 
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mode II components. But with the previous analyses based on 
the compliance method we are unable to partition the energy 
release rate. It is clear that considerations based on the analyses 
of the near-crack-tip singular fields are needed to obtain each 
component. 

By the aid of the complex factor in the notation by Suo and 
Hutchinson (1990),  which is similar to the stress intensity factor 
introduced by Malyshev and Salganik (1965),  singular stresses 
on the bond-line may be given as 

O-y -~7 i%y = g (  r/hi )i'/( 27rr) 1/2, (35) 

where K = Ki + iK,  (henceforth referred to as complex stress 
intensity factor) and r is the distance from the crack-tip. The 
height hi of the upper beam is chosen as the normalizing factor 
for r. Further, 

1 1 - fl* 
= ~ In - -  (36) 

27r 1 + fl* ' 

where/3* is one of the two Dundurs'  parameters, 

F ( K 2  - -  1 )  - -  ( K I  - -  1) 
/3* = (37) 

F ( K  2 + 1 )  + ( K  1 - I -  1) 

Subscripts 1 and 2 refer to the upper and lower beams as before, 
Ki = 3 - 4ut for plane strain and K~ = (3 -- u i ) / ( l  + ui) for 
plane stress, F = i z~/p,2, #i being shear modulus (i = 1, 2). 

The normal component of the relative displacement of the 
two points of the upper and lower crack surfaces is given as 

38, 
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Fig. 5 Variation of axial force with crack length 

where 

m = [(El + l)/ ,ui + (K2 + 1)l/z2]/ 
t - - - - -  

[2V27r (1 + 4e 2) cosh (Tre)]. (39) 

With the definition of the complex stress intensity factor given 
by (35),  the opening (mode I) and sliding (mode II) compo- 
nents of the energy, G~ x and Gs'~, that are released during an 
incremental extension of an interface crack, Aa ,  were first cal- 
culated by Sun and Jih (1987). One of the present writers gave 
formulas of Gt z and G~ in convenient forms as follows (Toya, 
1992): 

G~ = (G/2) [1  + F (e )  cos (2ca '  + ~p(~) + 00)]Aa,  (40) 

G~ = (G/2) [1  - F (e )  cos (2~a'  + tp(e) + 00)]Aa,  (41) 
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Fig. 7 Energy release rate at left-hand crack-tip, G,~, and its compo- 
nents: (a}h~= 10mm, h ~ = 1 m m , ( b )  h~ =Smm,  h~=5mm,{c )  h~ = 
10 ram, h= = 5 mm 

where 

[ sinh(27re) ],n 
F ( c )  = [ 2 ~ " 1  T ~  2) ' (42) 

a' = ln[Aa/(2h~)], (43) 

• Tan l [ ( 1 - k 2 + 4 c k ) / k o ] ,  for ko > 0 

0 ° = L T a n - l [ ( 1  k2+4ck) / ko]+1r ,  f o r k o - < 0  (45) 

with 

k = KH/Kz, ko = 2[k + E(k 2 - l ) ] .  (46) 

Values of  So(c) are tabulated in Table 1 in Toya (1992).  Espe- 
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Fig. 8 Energy release rate at right-hand crack-tip, G,,, and its compo- 
nents: (a) hl = 10ram, h== lmm, (b )h l  =Smm,  h2=Smm, (c}h l  = 
10mm, h = = S m m  

cially when c is small, say l el < 0.05, the following approxima- 
tion may be used: 

So(e) = - 2 e  In 2 = - 1.3863& (47) 

Further, G is the total energy release rate (Malyshev and Sal- 
ganik, 1965) 

G =  (~q + 1 + K 2 +  1 ] ( K ~ + K ~ t ) / t l 6 c o s h  2(7r{)1. (48) 
] 

It is seen from (40) ,  (41),  and (43) that the convensional 
definition for the components of  the energy release rates, i.e., 
lim,a,,.0 G~X/Aa (i = I, H), cannot be applied for interface 
cracks. Instead each component should be defined as 

Gi =- GA/Aa,  Gn =-- GA/Aa,  (49) 
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Fig. 9 Split-beam element under general loading condition 

for some finite crack growth step size Aa .  There is still no 
definite way of choosing a proper size of A a ,  but the character- 
istic length of delamination process, e.g., the thickness of an 
adhesive layer could be suggested. We note that G~ and GH 
calculated in the previous section are nothing more than these 
energy release rates with respect to the width of the element 
( A a  = 0.125 mm) adjacent to the crack tip. 

Sue and Hutchinson (1990) gave formulas of K~ and KH for 
the split beam with a unit width subjected to general stretching 
and bending as shown in Fig. 9. Their expressions are 

= cos co + ~ s i n ( c o  + y )  , (50) 

~2 P0 • 1 KH = [ - - ~  sin co - M--2- k4Aoh, ,J/~7~ cos (co + Y) , (51) 

where 

Po = PI - C i P 3  - -  C2M3lht,  (52) 

Mo = M ~  - C3M3. (53) 

The constants p, A0, 1, y, and C ' s  are given in Appendix C. 
Further, co is a real angular quantity that only depends on r 1 = 
ht /hz  and Dundurs' parameters, a*  and/3* (cf. Appendix C for 
the definition of a * ) .  The function co(a*, /3", r/) has been 
summarized in Tables 1 - 4  in Sue and Hutchinson (1990) for 
various c~* and/3* and rl = 0, 0.1, 0.5 and 1. Hence, substituting 
(50) and (51 ) into (40) and (41 ) we can obtain each component 
of the energy release rate. 

We apply Sue and Hutchinson's results to our problem. In 
the case where the point of application of load is on the delami- 
nated zone, we have 

M~' = ( D , / b D ) ( P a L d ' / l  - ½Zh), (54) 

M3 = P a j ' / ( b l ) ,  (55) 

for the left-hand tip of the delamination. Quantities M* and M3 
for the right-hand crack-tip are obtained by replacing aL and d '  

in (54) and (55) with aR and d, respectively. For both cases 
we readily see that 

Me = - D , h P o / ( 2 D ) .  (56) 

Hence the ratio k = K~/K~ is identical for both crack tips and 
moreover it is independent of the crack length. 

For the case where the point of force application is outside 
the delaminated zone, we have 

M ~  = ( D , / b D ) [ P d ( l  - at,)/1 - ½Zh], (57) 

M3 = (Pd /b l ) (1  - ag). (58) 

In this case we have also the same constant ratio of Me/Pc as 
given by (56).  Thus, in view of (40),  (41),  and (43),  we 
conclude that ratios GH/G~ are the same for both crack-tips 
(except the case where one tip grows in pure mode II while the 
other does in mixed mode) and independent of the crack length 
and location of the applied load. 

We also note that the total energy release rate given by (48) 
agrees with (27) and (30) under plane stress condition. 

We now calculate K~/K~ for the example models treated in 
the previous section. Since values of w are given only for the 
case of h~ ~- h2 in Sue and Hutchinson (1990),  we reverse the 
geometry of the model beams in order to apply their results. 
Namely we choose aluminum for the upper beam material and 
acrylic resin for the lower beam and reverse the direction of the 
applied force. For the aluminum/resin combination, Dundurs' 
parameters take the values a*  = 0.923 and/3* = 0.300. By 
extraporating the values in Tables in Sue and Hutchinson 
(1990),  the angle w is estimated to be w ~ 45 deg, 50 deg, 58 
deg for rl = 1, 0.5, and 0.1, respectively. Using these values, 
we calculate K~ and Ku and substitute these into (38) to check 
the sign of v at r = Zxa. If v is negative, pure mode II is implied. 
While if  positive, this means mixed mode. In the latter case, 
each component of the energy release rate for the step size Aa  
= 0.125 mm is calculated from (40) and (41).  

In the case of ht = 10 mm (acrylic resin) and h2 = 1 mm 
(aluminum), we checked that v became negative for all crack 
lengths tested. This observation agrees with the computational 
results from FEM (cf. Fig. 7 ( a )  and Fig. 8 ( a ) )  except the case 
of G,, R at c / l  ~ 0.5, where slight Gt component has been ob- 

served (Fig. 8 (a ) ) .  
Ratios of GflGn for the cases of hi = h2 = 5 mm and h, = 

10 mm, h2 = 5 mm are compared with the numerical solutions 
in Table 1. 

Since cracked and uncracked parts of the beam are required 
to be of infinite length in Sue and Hutchinson (1990),  we 
cannot expect good correlation between the theory and numeri- 
cal results for the cases of either short cracks or short uncracked 
parts of the beam (i.e., when c -< 5h or aL, aR -< 5h). Except 
these cases, and the cases at c / l  = 0.5, for which the energy 
release rate for the left-hand crack-tip is very small (cf. Fig. 
7 (b )  and (c ) ) ,  we observe that the ratios GflGH based on FEM 

Table 1 

hi =5 mm(Acryl) 
h2 =5 ram(A1) 

Comparison of the ratio Gi/Gj~ (percent) 

I hl =10 mm(Acryl) 
h2 =5 ram(A1) 

left-hand tip right-hind tip 
c / g  FEM [ theory FEM theory 
0.1 0/100 58.1/41.9 
0.2 0/100 66.2/33.8 
0.3 0/100 0/100 68.6/31.4 
0.4 O/JO0 69.6/30.4 
0.5 91.0/9.0 70.0/30.0 74.2/25.8 
0.6 71.4/28.6 69.8/30.2 
0.7 70.0/30.0 74.2/25.8 70.5/29.5 
0.8 72.1/27.9 72.5/27.5 

left-hand tip right-hand tip 
FEM I theory FEM I theory 
0/100 34.5/65.5 
o/~oo 44.2/5s,8 
0/100 0/100 48.0/52.0 
0/100 49.9/50.1 

65.9/34.1 49.8/50.2 55.4/44.6 
50.7/49.3 50.1/49.9 
50.7/49.3 55.4/44.6 50.8/49.2 
65.2/34.8 52.1/47.9 
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are nearly equal for both crack-tips, agreeing with the theoretical 
prediction. With regard to the values of Gt /Gn ,  the agreement 
between the theory and numerical calculations is also reasonable 
considering rather crude mesh division used in the FEM compu- 
tations. The result suggests that the complex stress intensity 
factors may be determined with reasonable accuracy from the 
components of the energy release rate obtained from FEM by 
combining the works of Toya (1992) and Suo and Hutchinson 
(1990). 

5 Concluding Remarks 
Asymmetric three-point bending of a simply supported lay- 

ered beam with an internal interface crack was analyzed based 
on the classical beam theory. Axial forces induced in the parts 
of the beam over and below the crack, the compliance, and the 
strain energy release rate were derived. The analyses were well 
confirmed by finite element computations, and hence the utility 
of a simple strengh of materials approach to an interfacial crack 
in a laminate was ascertained. 

Further, the decomposition of the energy release rate into 
mode I and mode lI components was made by combining the 
analysis for the components of the energy release rates by Toya 
(1992) and the two-dimensional linear elasticity solutions by 
Suo and Hutchinson (1990) for a split-beam element subjected 
to general loading conditions. It was shown that the ratios of 
mode mix, G f f G n ,  with G~ and Gu defined in the present paper 
are the same for both crack-tips (except the case where one tip 
grows in pure mode II while the other does in mixed mode), 
and independent of the crack length and the location of the 
applied load. Theoretical values of the ratios of mode mix were 
also shown to he reasonably accurate using finite element analy- 
sis. We expect that the parameter of mode mixture G d G u  may 
be useful for the study of the criterion of the mixed mode 
delamination growth. 
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A P P E N D I X  A 

The flexual rigidity of the composite beam is 

D '  = Etl'~ + Ezl~ (A1) 

where I[ and 1~ are the second moment of inertia of the upper 
and lower beam with respect to the neutral axis of the composite 
beam, i.e., 

1; = b h ~ / 1 2  + ( i f -  h , /2)2bh~ (A2) 

1~ = b h ~ / 1 2  + (hi + h2/2  - y)2bh2 (A3) 

with ybeing the distance of the neutral axis from the top surface 
of the upper beam, 

Eth~ + E2(h  2 - h~) 
y = (A4) 

2(E~hl + E2h2) 

A P P E N D I X  B 

The four unknown constants, s3, s~, J~, and J~ are determined 
from the following continuity conditions for the beam inclina- 
tion and deflection: 

dyA~ _ dyl~c at B, (B 1 ) 
dx .~=,c dx  x=o 

dysc  dycl)[ at C, (B2) 
dx i~=,.,, dx '  I,,.,=c~ 

YAB[ . . . .  + Y~JCI.,'=:,',. = YC~)[~' ,,,~ + Ym~[~'-,,R at C, (B3) 

dyed dyDr 
d x '  ~'-o - - ~ 7  1, ..... at D. (B4) 

The solution of equations (B 1 ) -- (B4) are given as follows: 

s3 = {Ac~(c, .  + 3d ' )  + B c ~ ( 3 d '  - c k ) } / ( l D )  

- s2cc(cc + 2 d ' ) / 1  - s ~ c l e ( - c k  + 2 d ' ) / 1  

+ 2 ( B a ~ - A a ~ ) / ( I D ' )  (B5) 

Ji = s3 + 3 a ~ A / D '  (B6) 

s~ = { - A c ~ ( c L  - 3d) + B c ~ ( 3 d  + c R ) } / ( 1 D )  

+ S2CL(CL -- 2 d ) / l  - S~Ck(Ck + 2 d ) / l  

- 2 ( B a ~  - A a { ) / ( 1 O ' )  (B7) 

J~ = s~ + 3 a ~ B / D '  (B8) 

with 

A = P d ' / ( 6 1 ) ,  B = P d / ( 6 l ) .  
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A P P E N D I X  C 
The constants appearing in (50) - (53) are defined as follows 

(Suo and Hutchinson, 1990): 

~ 1  - c~ .2 
P = 1 /3 *2 (C1)  

where 

F(K2 + 1) - (xl + 1) 

F(K2 + 1) + (•l + 1) ' 
(c2) 

is a Dundurs' parameter. Further, using the notations in the 
present paper, 

Ao = , sin y = ] / ( D '  - D ) D i  (C3) DoD2 

b E l h l ( D '  - D i )  " V ( D '  D t ) D  ' 

I = D 2 / ( 1 2 D ) ,  C1 = Do/(bE2h2),  (C4)  

(22 = h ~ h D o / ( 2 D ' ) ,  C3 = D ~ / D '  (C5) 

under plane stress condition. 
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Coefficient of Restitution for 
Collinear Collisions of Elastic- 
Perfectly Plastic Spheres 
Based on a simplified theoretical model .for the normal contact interaction o f  two 
elastic-perfectly plastic sl)heres, an analytical solution is provided for  the coefficient 
o f  restitution. The solution is expressed in terms o f  the ratio o f  impact velocity to 
yield velocity rather than in terms of' material properties such as the yield stress 
which is difficult to reliably ascertain for  many materials. 

I n t r o d u c t i o n  

A simplified theoretical model is presented for the normal 
contact interaction between two elastic-perfectly plastic spheres. 
The model was incorporated into the discrete element code 
TRUBAL by Thornton and Ning (1994) in order to numerically 
simulate a sphere impacting orthogonally with a target wall. 
From the results of the simulations a relationship was obtained 
between the coefficient of restitution and the impact velocity. 
In this paper we derive the analytical solution based on the 
same simplified theoretical model. Throughout the paper it is 
tacitly assumed that quasi-static contact mechanics theories are 
valid. 

T h e o r e t i c a l  B a c k g r o u n d  

E l a s t i c  L o a d i n g .  For two spheres of radii Ri and elastic 
properties E~ and uz (i = 1,2)  subjected to an applied force P,  
the Hertzian pressure distribution over the contact area of radius 
a is 

p ( r )  = p 0  1 - (1) 

where 

3P 
(2) P0 - 27ra 2 • 

The contact normal force and contact radius are given by 

P = ~E*R* 1/2a312 (3) 

and 

= ( 3 P R * ~  w3 
a \ - ~ - ]  (4) 

where a is the relative approach of the two particle centroids 
and 

a 2 = R * a .  (5) 

Contribnted by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on this paper should be addressed to the Technical Editor, Professor 
Lewis T. Wheeler, Department of Mechanical Engineering, Universily of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPI.mD MECHANICS. 

Manuscript received by the ASME Applied Mechanics Division, Nov. 28, 1995 
final revision, Aug. 2, 1996. Associate Technical Editor: J. T. Jenkins. 

In the above equations 

1 1 - u~ 1 - u~ 
- -  + - -  ( 6 )  

E* E1 E2 

1 l l 
- + . ( 7 )  

R* Ri R2 

Yield. If the relative impact velocity V is just large enough 
to initiate yield in one of the spheres then, using (3) and (5) 
we may write 

1 m*V~ = " Pda = 8E*a~ (8) 
2 15R .2 

where Vy, which we define as the yield velocity, is the relative 
impact velocity below which the interaction behavior is as- 
sumed to be elastic, ay is the contact radius when yield occurs 
and m* is related to the particle masses mi by the equation 

1 1 l 
- + ( 9 )  

m * m I m2 

Rearranging (8) we obtain 

' 'S  

ay \ 1 6 E *  
( lO) 

We now define a "contact yield stress" ~ry = po(ay). Using 
(2) and (4) ,  

2E*ay ( 11 ) 
oy - 7rR* 

Substituting (10) and rearranging, we obtain 

5 :g3 112 
[ zc '~a[87rR*3'~'/z 5/2 = 3 . 1 9 4 ( e ; R * " ~  (12) 

In the case of a sphere of density p impacting with a plane 
surface, R* = R, m* = m and (12) reduces to 

(-----..~---~2(-~-~t/2crs'2 = 1.56(  o-:. ~,/2 (13) 
v,= \ 2 e , )  \5p) ' 

which was originally obtained by Davies (1949). 

P l a s t i c  L o a d i n g .  In order to model the post-' 'yield" be- 
havior, it is necessary to make some simplifying assumptions. 
If plastic deformation occurs we assume a Hertzian pressure 
distribution with a cut-off corresponding to the contact yield 
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stress or,. defined by ( 11 ). After yield, the normal force is given 
by 

£; 
P = P ,  - 2re [cr(r) - ~ry]rdr (14) 

where P,, is the equivalent elastic force given by (4) which 
would result in the same total contact area and ap is the radius 
of the contact area over which a uniform pressure is assumed, 
as indicated in Fig. 1. Integrating (14) we obtain 

I( /F P = 7ra~,cry + P,, 1 - . (15) 

Considering the conditions at yield, cry may be defined in 
terms of the normal force Py and contact radius ay as 

3Py (16) 
Cry 2rca~ 

or, according to Fig. 1, 

cry - 1 - (17) 
27ra 2 

The contact radius is obtained from 

a3 _ 3 R ' P , ,  (18) 
4E* 

Hence, combining (16),  (17),  and (18) we find that 

o r  

a 2 = a ~  + a~ ( 1 9 b )  

which corresponds to the assumption of Bitter (1963). Substi- 
tuting (19) and (18) into (15) we obtain 

P = p~, + 7rCry(a 2 - a~).  (20) 

I 

L 
Fig. 1 

laP  

I 

J_a l T 
Normal traction distribution 

p*  

P y 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . .  i 

y P 

Fig. 2 Force-displacement relationship 

Using the Hertzian substitution a 2 = R ' a ,  where oe is strictly 
the relative approach, the force-displacement relationship dur- 
ing plastic loading is given as 

P = P~, + 7 r a v R * ( a  - av )  (21) 

which is linear, as shown in Fig. 2. 

Elastic Unloading. If plastic deformation occurs during the 
loading stage the contact curvature during unloading is 1/Ri7 
< 1 / R *  due to permanent deformation of the contact surfaces. 
During unloading the force-displacement behaviour is assumed 
to be elastic and is provided by the Hertzian equations but with 
a curvature 1/Ri,* corresponding to the point of maximum com- 
pression. At the point of unloading, the contact area developed 
by the actual maximum normal force P* and reduced curvature 
1/R;,* is the same as that which would be generated by an 
equivalent elastic force Pff and a contact curvature 1 / R * .  
Hence, from (18),  

where 

R;a2P * = R ' P *  (22) 

P [  = ~E*R*I /2oe  .3/2.  (23) 

It can be seen from Fig. 2 that the linear plastic loading curve 
is tangential to the Hertzian curve a the yield point and, when 
extended, intersects the vertical axis at P0 < 0. From (20) and 
( 11 ) the plastic contact stiffness is defined as 

kN = 7rR*cr~, = 2 E * a y .  (24) 

Therefore, 

and 

P ~  - Po  
~* (25) 

~R * cry 

Po = Py - 2 E * a y a y .  

Substituting (4) and (5) ,  

Po - PY 
2 

(26) 

(27) 
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and, hence, 

a* = 2 P * _ _ +  Py (28) 
27rR * oy 

= ( 2 P *  + PYl 
a*2 \ 27ray / . (29) 

Combining (22), (23), and (28) leads to 

4E* ( 2 P *  + Pyt 3`2 
k / 

(30) 

and, during elastic unloading, 

4 1 7 " 0 "  1 / 2 ( 0  / - -  a p )  3 /2  P = ~ ~t, (31) 

where % is defined in Fig. 2. 

Coefficient of  Restitution 

At impact velocities Vi -< Vy no plastic deformation occurs 
and, ignoring energy losses due to elastic wave motion in the 
two bodies, the coefficient of restitution e = 1.0. If the impact 
velocity Vi > Vy, the rebound kinetic energy is equal to the 
work done during elastic recovery. Thus 

, , , , 2  5 , - 2 P * ' c ~ *  O/p) ~m vr = (32) 

from which 

p , 2  = 2 E , a y ( m , V  2 _ 6m,V2y).  (40) 

Substituting (40) into (35) the coefficient of restitution can be 
obtained from 

e2= 6ay [1_ 1 (_~z~ ~] 
'Sa* 6g \ v, / j " 

(4l) 

Using the substitutions 

2 3Pv 
ay = " (42) 

27rcry 

and 

2P* + Py 
a .2 = - -  (43) 

27rcry 

we obtain 

e2 6~/3( P, )"211 1 (y..Z~ 2 ] 
= 5 2 V ; +  Py 6 \Vi i  J " 

(44) 

Combining (3),  (8) and (40) 

(45) 

where 

a .2 
( a *  - -  a , , )  = - -  

R;,* 

Hence, using (29) and (30) 

(33) 

1 3P .2 
- rn*V~ = - -  (34) 
2 1 0 E ' a *  

The coefficient of restitution is defined as e = Vr/Vi. Thus 

3p* 2 
e 2 = (35) 

5 E * a * m * V  ~ " 

The initial kinetic energy is equal to the work done during 
decelleration of the particles. Therefore, from inspection of Fig. 
2, 

½ m * V ]  = 2 1 • gPyoly + ~(Py + P*)(o/* - -  O~y) .  (36) 

Using (5),  (16), and (28) 

2P* + Py 
~ - -  Ody -~ - -  

Therefore 

3Py P* - Py 

2rrR*cry 2rrR %ry rrR*cry 

1 m*V~ 2 p , 2  _ p~ 
= ~ Pyoty + 27rR*ay 

Using (3) and (24) we obtain 

1 m*V~ 2 p . 2  
= ~ Pyozy + 4E*a------~ 3 

1 p . 2  
= 1-2 m*Vy2 + __4E*a~' 

1 
PyOLy 

(37) 

(38) 

(39) 

Therefore, the general expression for the coefficient of restitu- 
tion is 

e =  I - 6 \ V i i  J 

X 

E + 

I /4  

(46) 

with the yield velocity Vy defined by (12) or, in the special 
case of a sphere impacting a plane surface, by (13). 

1.0 <1 

0.9 ~ u .  (48) 

ii 0.8 equ. (46) 
,~ 0.7 

'~ 0.6 

0.5 o - computer simulated data 

0.4 , -"b~% . 10 100 
normalised velocity (V/Vy) 

Fig. 3 Theoretical predictions of the coefficient of restitution given by 
the general Eq. (46), the approximation for high impact velocities (48) 
and Q-computer simulated data (Thornton and Ning, 1994) 
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Equation (46) satisfies the condition e = 1.0 when Vi = Vy. 
At high velocities, (V,/Vi)2 ._. 0 and (46) becomes 

e = 2 ~  

Taking Vi ~> Vy we then obtain 

(6~f3~1 /2{  ~.~ ~114(V3~1/4 = ( g y ~  I/4 

e = \ T  ) ~--~J \~/ 1 " 1 8 5 \ V i /  ' (48) 

An alternative prediction was suggested by Stronge (1995) 
which may be written in the form 

g T I ~ { V i ~ 2 _ ~ 1 3 1 8  

~=~ \Vyl (49) 

Inspection of (49) shows that, for V~ ~> Vy, the equation degen- 
erates to 

e = 1.19s \ ~ /  (50) 

and that, for Vi = V~., e = 1. However, Stronge's (1995)equa- 
tion (49) also predicts e > I for Vy < Vi < 1.59 V~.. 

For the case of a sphere impacting a plane surface we may 
substitute for Vy using (13) to obtain 

/ 5 \1/8 

e = 1.324 /E~.4p ) a '  (Vi)_ll 4 (51) 

which was given by Thornton and Ning (1994). Johnson 
(1985) provided a similar expression to (51) except that the 
prefactor was 1.72 as a result of assuming that the plastic normal 
contact stiffness was twice that given by (24). 

Figure 3 shows the dependence of the coefficient of restitu- 
tion on the impact velocity according to the general expression 
(46). Superimposed on the figure is the prediction according 
to (48) and the numerical results obtained by Thornton and 
Ning (1994). It can be seen that (48) is only satisfactory for 
V > 10Vv. Equation (46) provides an analytical solution for 
the coefficient of restitution in the range V~, < V < 10V~ which 
is relevant to many industrial and scientific areas. 
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Criticality of Damping in Multi- 
Degree-of-Freedom Systems 
The concept o f  criticality in multi-degree-of-freedom systems is discussed Sufficient 
conditions for  overdamping, critical damping, and underdamping are derived in terms 
of  the matrices appearing in the modal coordinates. It is noted that results available 
in the literature for the case o f  overdamping and mixed damping are erroneous. This 
has been pointed out by Bhaskar (1991, 1992) for  the cases o f  overdamping and 
mixed damping, and by Barkwell et al. ( 1 9 9 2 ) f o r  the case o f  overdamping. The 
error in the proof  o f  the conditions Jbr overdamping is brought out. A sufficient 
condition for  overdamping is presented. Results obtained for  the symmetric systems 
are then generalized to the symmetrizable systems. Theorems on eigenvalue bounds 
are applied to establish criticality. 

1 Introduction 
For a single-degree-of-freedom vibratory system, the damp- 

ing ratio ~ determines the boundary of oscillatory and nonoscil- 
latory damped free motion. The value of damping ratio at this 
boundary (also known as critical damping) is 1. It has been 
observed (see for example, Meirovitch, 1975) that, in case of 
critical damping, free response of the system approaches the 
equilibrium configuration fastest. 

Consider the free damped motion of a multi-degree-of-free- 
dom system, governed by the following matrix differential equa- 
tion: 

M~ + Cx + Kx = 0, (1) 

where M, C, and K are the mass, stiffness, and damping matri- 
ces of order n × n, respectively and x is the response vector 
of size n × 1. In this section and the next, matrices M, C, and 
K are assumed to be symmetric, in addition, it is also assumed 
that M and C are positive definite; while allowing for rigid- 
body modes, matrix K is assumed to be positive definite or 
positive semi-definite. The case of semi-definite damping matrix 
is not straightforward and is omitted from the present discus- 
sion. Statements regarding criticality, similar to those for single- 
degree-of-freedom systems, can be given to each of the decou- 
pied modes, when damping is classical (i.e., when the equations 
of motion decouple in the modal coordinates). For a general 
case of damping, criticality is expressed in terms of latent roots 
of the k-matrix (k2M + kC + K). Analogy suggests that, for 
the case of multi-degree-of-freedom systems, these conditions 
could be expressed in terms of definiteness properties of the 
matrices involved. It is surprising that this problem was not 
addressed until as late as 1955 (Duffin). 

Nicholson (1978) defined a system to be underdamped when 
all the modes are underdamped with a sufficient condition ema x 
--< 2k~/~2,, where e,n~ is the largest eigenvalue of (M-1/2CM -I/2) 
and k~,,~ is the smallest eigenvalue of (M-~nKM-I/2).  Here 
M ~/2 is the positive square root of M. Muller (1979) gave a 
sufficient condition for a system to be underdamped as positive 
definiteness of [4M-~/2KM-I/2 - (M-I/ZCM-I/2)2]. This gen- 
eralization was further improved by Inman and Andry (1980) 
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with a sufficient condition of underdamping as positive defi- 
niteness of [2(M I/2KM-l/2) w2 - (M '/2CM-I/2)]. They 
then demonstrated that Muller's condition is a special case of 
their's, when matrices (M-~nKM i/2) and (M ~/2CM i/2) 
commute but, they did not notice that, this is not the only case 
when the two conditions are equivalent. In fact, whenever the 
smallest eigenvalue of 2(M-I/2KM ~/2)~2 is greater than the 
greatest eigenvalue of (M-~/2CM-~/2), all the three criteria 
for underdamping, viz. those of Nicholson's (1978), Muller's 
(1979), and lnman's (1980) are equivalent. To show this, the 
tbllowing property of real, symmetric, and positive definite ma- 
trices is required: 

Ifa~ --< a2 -----... --< a,, are the eigenvalues of a real, symmetric, 
and positive definite matrix A and bl -< b2 - < . . .  -< b,, are the 
eigenvalues of another real, symmetric, and positive definite 
matrix B and if a~ > b,,, then ( A  p - B p) iS positive definite 
for any positive integer p. 

This property can be readily proved using the min-max proper- 
ties of Rayleigh quotients associated with the matrices A, B, A ~', 
and B p and noting that the eigenvalues of A ~ are 
a~' <- a~ <- . . . <- al', and those of B p are b~' <- b~ <- . . . <- b{~. 

It is now clear that replacing A by 2(M I/2KM-I/2)1/2 and 
B by (M W2CM-I/2), when a,an > b ..... (Nicholson's criterion 
essentially), Inman's criterion follows for p = 1 and Muller's 
for p = 2. Of the three criteria, Nicholson's is undoubtedly the 
most conservative. Using a result (Bellman, 1968) that when- 
ever A - B is positive definite (A, B non-negative), (A ~/2 _ 
B 1/2) is also positive definite (note that this implication is one 
way), we conclude that Inman's criterion is sharper than Mull- 
er's. 

The three criteria presented in the literature involve matri- 
ces which appear in the governing equations expressed in the 
so-called pseudo-modal coordinates (coordinates obtained 
through the transformation y = M ~/2x, y being the vector 
of generalized displacements in the pseudo-modal coordi- 
nates). In this paper, we have chosen to express the condi- 
tions of criticality in the modal coordinates (coordinates in 
which inertia and stiffness terms decouple) so that the equa- 
tions for damped free motion are given by (see Meirovitch, 
1975; Newland, 1989) 

t i + I~¢ 1 + Aq = 0 (2) 

where C = UTCU, U being the modal matrix (corresponding 
def 

to the undamped problem). Define two k-matrices as Q(X) = 
def 

(h2M + hC + K) and R(h)  = UrQ(h)U = (k2I, + hC + 
A) whose 2n latent roots are given by det [Q(h)]  = 0 and 
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det [R(X)] = 0, respectively. Since determinant of a product 
of matrices equals product of respective determinants, and since 
the rows and columns of the modal matrix U are linearly inde- 
pendent so U cannot be singular, we have det JR(X)] = 0 
det [Q(R)] = 0. This equivalence enables us to use matrices 
from the modal coordinates while arriving at conditions of criti- 
cality. These conditions are on the lines of those given by Inman 
et al. (1980), but the matrices taken in the present paper are 
coefficients from the equations of motion in the modal coordi- 
nates (in terms of A and C), instead of the pseudo-modal 
coordinates used by Inman et al. (1980). Definitions presented 
there draw incorrect conclusions for the case of overdamping 
and mixed damping and this will be discussed later. 

2 Condi t ions  of  Cri t ica l i ty  in T e r m s  o f  Def ini teness  
of  the  Matr ices  

Sufficient conditions for a system to be critically damped, 
underdamped, or overdamped are presented as follows: 

Condition 1 (Critical damping): If C = 2A 1/2, the system 
described by (2) must be critically damped. 

Condition 2 (Underdamping): I f ( 2A  1/2 - C) ispositive 
definite, the system described by (2) must be underdamped. 

Condition 3 (Overdamping): l f ( C  - 2A~/)xI,,) ispositive 
definite, the system described by (2) must be overdamped 

Here A ...... denotes the maximum eigenvalue of A. The first 
two conditions are essentially the same as those of Inman and 
Andry (1980). Discussions on these two cases are presented 
here again for the sake of completeness and also to present a 
background in order to contrast the situation of overdamping 
with that of underdamping. 

2.1 Critical Damping. The condition presented above for 
critical damping requires that the modal damping matrix C be 
diagonal; i.e., damping must be classical. The ith equation can 
be written as 

C]i -1- 2A]il2 qi "}- Aiiqi = 0.  (3) 

Discriminant of the characteristic equation (2A]/2) 2 - 4A~ is 
then equal to zero, and so latent roots of the k-matrix Q(X) are 
repeated and real. 

2.2 U nderdamping. Positive definiteness of (2A ~/2 
- C), C and 2A requires, for all nonzero vectors x, that 
4(xTAI/2x) 2 > (xrCx) 2. Using Cauchy-Schwarz inequality for 
normalized vectors x, one obtains (xTA|/2X) 2 ~: xTAx. TO look 
into the nature of latent roots of the k-matrix R(X) we post 
multiply R(k)  by its unit right latent vector x and premultiply 
by x T so that the latent roots are given by 

h = [ -  xrCx = x/(xrCx) 2 - 4xrxxrAxJ. (4) 

It then follows that the latent roots occur in complex-conjugate 
pairs, which is necessary and sufficient for underdamping to be 
observed. 

2.3 Overdamping. An overdamped system is defined as 
the one whose all modes are overdamped. This means that the 
latent roots of the k-matrix Q(R) (or equivalently R(R)) must 
all be real and negative. The criterion for overdamping given 
by Inman et al. (1980), when expressed in modal coordinates, 
states that the system must be overdamped if ( C - 2A ~/2) is 
positive definite. This result has been accepted and/or used by 
many authors (see Ahmadian et al., 1984; Gray, 1982; Inman 
et al., 1982, 1982a, 1982b, 1983, 1987, 1989; Liang et al., 1988; 
Nicholson et al., 1983, 1987, 1987a; Ross et al., 1990; Ulsoy, 
1989; etc., for example). In the following discussions it is 
shown that this is incorrect through a counter-example. This 

has been noted by Bhaskar (1991, 1992) and later by Barkwell 
et al. (1992). 

• A counter-example: Consider the following matrices 

[22.0 0 o] 
A = 2 × 102 and C = 1.0 32.0 1.0 . 

0 1.0 1.0 36.0 

Both C and ((2 - C,.) are positive definite since 

eig(C) = {21.844 31.818 36.338} and 

e i g ( C - C c ) =  {1.755 0.608 4.712} 

where eig ( . )  represents the eigenvalue of ( ' ) .  Thus the criterion 
of Inman et al. (1980), would predict that none of the modes 
oscillate. This could be checked by computing latent roots of 
the associated k-matrix R(X), which can be shown to be equal 
to the eigenvalues of the constant matrix A defined as 

[0 
A = . (5) 

- A  

If positive definiteness of (C - Co) were a sufficient condition 
for overdamping, all the eigenvalues of A must be negative 
and real (a necessary and sufficient condition for overdamping). 
We observe that due to the presence of a complex conjugate 
pair of eigenvalues in 

e ig(A)  = {-6.259 -25.448 -8.826 

-14.185 ± j l . 0 4 0  -21.097}, 

one of the modes oscillates. Note that if xTCx ~- xr(2Al/2)x 
for all x, the discriminant in the above equation need not neces- 
sarily be positive, since ( x ' I A I / 2 X )  2 ~ xrAx. However, the 
difference [(xrAx) - (xrA~/2x) 2 ] is expected to be small (zero 
when x is an eigenvector of the matrices A or A I/2) due to 
stationarity of Rayleigh-quotients around the eigenvectors. Thus 
if the eigenvector of the matrix A differs from the latent vector 
of the system by a small quantity 6 (in the sense of an appro- 
priate norm), the difference [(xrAx) - (xrA1/2x) 2] would be 
of the order of 62. In these cases, the approximation (x rA~/2x) 2 

xrAx would closely hold. Hence if the inequality xrCx > 
xr(2Al/2)x is a strong one, where x is a unit latent vector of 
the system, it would outweigh in its favor as compared to the 
weak inequality (xrAt/2x) 2 _< xrAx, so that the inequality 
(xrCx) 2 ~- 4xrAx would hold, and hence overdamping would 
be correctly predicted. It is, therefore, not surprising that the 
sufficiency conditions for overdamping based on the positive 
definiteness of ((2 - 2A1/2), although not strictly correct, have 
been in use for so long. The reason clearly is the fact that due 
to stationarity of the Rayleigh-quotients associated with the 
matrices A and a 1/2, counterexamples are hard to find. To study 
the behavior of latent roots of the system, while the difference 
((~ -- 2A ~/2) varies, consider the matrix C(c) = 2A 1/2 + eP 
where P is a constant positive definite matrix and e is a positive 
scalar. Consider the scalar form D(e)  = [yr(2A~/2 + eP)y] 2 
- 4yryyrAy where y(e) is a latent vector of the k-matrix 
associated with the problem when C = (2(e). The discriminant 
D(e, y(e))  > 0 for any e > 0 if 

o r ,  

[a] OD(e, y = Y0)/& > 0 and 

[b] D(e = O,y = y o ) - ~ O  

[c] OD[e, y(e)]lOe > 0 and 

[d] D(e = 0, y = y(0))  -> 0. 
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In the first set of these conditions (i.e., [a] and [b]) ,  the 
discriminant is a function of the parameter e alone while the 
vector y is held constant equal to Y0. These conditions, i f  cor- 
rect, assure that the discriminant is positive for all positive 
values of c when y equals any arbitrary constant vector Y0 (thus 
it is also positive when this arbitrary vector is a latent vector 
of the system). The second set of conditions (i.e., [c] and [d]) ,  
in contrast, treat the vector y as a variable equal to the latent 
vector of the system while the parameter e changes (the latent 
vector of the k-matrix describing the system is a function of  
the matrix (2(e), which in turn is a continuous function of 
due to Ostrowski's theorem on the continuity of eigenvalues; 
Wilkinson, 1965). I f  conditions [c] and [d] were correct, it 
would then follow, that the discriminant is always positive for 
all positive values of e when vector y assumes a value equal to 
a latent vector of the system, as e varies. 

Validity of conditions [a] and [d] could be shown as follows. 
The left-hand side of [a] equals 4yoA~ t~Zy0yopyo'r + 
2e(y~Py0) 2 which is positive since the first term is a product 
of two quadratic forms of  the positive definite matrices A and 
P,  and the second term is square of a positive definite quadratic 
form. When y(e )  is treated as a variable equal to the latent 
vector of the system corresponding to the variable value of  e, 
the left-hand side of [d] equals zero since at e = 0 and y 
= y (0 ) ,  (2 = 2A t/2 and the latent vectors coincide with the 
eigenvectors of A (Caughey, 1965) (in fact, in the present 
formulation using modal coordinates, the matrix A is a diagonal 
matrix so that ith eigenvector is the ith basis vector e~). To 
examine the validity of [b],  when the vector y is kept constant, 
the left-hand side of [b] could be shown to be equal 1o 

D(e  0, y y,,) 4 (y~A)/Zy0) 2 r r . . . .  4yoy0y0Ay0 

which is negative due to Cauchy-Schwarz inequality. Thus in- 
equality [b] does not hold. Again it could be shown that the 
left-hand side of [c] may not be positive since the latent vector 
y (e )  is no longer constant but varies with e. Note that the left- 
hand side of  [c] is different from that of [a] ,  since derivatives 
of y (e)  with respect to the parameter e appear in the expression 
of [c] .  Hence inequality [c] also does not hold. 

In the reference (Inman et al., 1980) conditions [a] (the case 
when the vector y has been held constant during differentiation) 
and [d] (the case when y(e )  is a variable depending on the 
value of e), have been taken as sufficient for positive definite- 
ness of the discriminant, which is incorrect. The fallacy in the 
proof presented by [nman et al. (1980) lies in the fact that, 
while calculating rate of change of the scalar form, vector y 
has been kept constant whereas for calculating its value at c = 
0 it has been treated as a variable. 

The variation of the qualitative behavior of the latent roots, 
while e varies, is best illustrated through an example. The nu- 
merical values of A (hence C~.) and P = [(2(e = I) - C,.] are 
taken to be the same as those in the counter-example presented 
in this section earlier. New values of the matrix (2(e) are now 
generated by varying the scalar e. The difference (2(e) - 
2A ~/2 = eP must now be positive definiteJbr all positive values 
of e, since e is a positive scalar and P is a positive definite matrix. 
Therefore, if the sufficient condition of overdamping presented in 
the reference (Inman et al., 1980) were correct, the overall system 
must always remain overdamped, no matter what the value of 
be (so long as it is positive). This is not true tor the present set 
of numerical values since there exist complex branches in the 
trajectory of the latent roots (Fig. 1, in which c ~ [0, 2]). Imagi- 
nary part of the latent roots is plotted as a function of e in Fig. 
2. Note that there exist intervals of values of c for which latent 
roots possess a complex-conjugate pair. The numerical values of 
A and P matrices chosen to generate these trajectories are such 
that the counter-example presented in the beginning of this section 
corresponds to e = 1. 

Proof  o f  sufficiency of  condition 3: Condition 3 for over- 
damping presented here requires that xr((2 - 2A],(,~x I,,)x > 0 
for all arbitrary vectors x. Separating the terms, one obtains 

rain (xr(2x/x~x) > (xT2A~2xx/xrx) = 2A,~,(~2 x . (6) 
x 

Since both sides of the inequality are positive, the quantities on 
both sides can be squared without changing direction of the 
inequality. Thus for an arbitrary unit vector x, 

rain [ (xq~x)  2] = [min (xq~x) ]  2 

> 4A ..... = 4 max ( x r A x ) .  (7) 

This inequality implies overdamping since the discriminant in 
Eq. (4) is always positive. 

2.4 Mixed Damping.  A system is said to possess mixed 
damping if, and only if, in the damped free response, at least 
one mode oscillates and at least one does not. For this case the 
criterion of Inman et al. (1980) demands that the matrix (2A t/~ 
- (2) must be indefinite. It should be emphasized here that 
indefiniteness does not imply that the matrix could be either 
positive definite or negative definite. Rather it means that it 
must not be either. It follows then that at least one eigenvalue 
ot' (2A r/2 - (2) must be negative and at least one must be 
positive. It so turns out that indefiniteness of (2A 1/2 - (2) is 
neither a necessary nor a sufficient condition for mixed damping 
(this has been discussed by Bhaskar (1991, 1992)). Necessity 
is violated by the counter-example presented in Section 2.3, 
since mixed damping is observed, although ((2 - 2A 1/2) is 
positive definite for the example chosen there. The incorrectness 
of  sufficiency is demonstrated through the following two 
counter-examples. 

• Counter-examples: Consider  the fo l lowing modal  
damping matrix C and the critical damping matrix C, 

(2 = 1 25 1 and 
1 1 30 

20.0 0 0 ] 
C,. = 0 28.284 0 . 

0 0 34.64 l 

Eigenvalues of ((2 - C,.) and those of  (2 are then given by 

e i g ( ( 2 -  C~,) = { - 3 . 3 7  -5.21 +0.16 , 

eig((2) = {19.26 24.92 30.32}. 

Thus matrix ((2 - C,.) is indefinite and (2 is positive definite. 
The condition of Inman et al. (1980) predicts that damping 
must be of mixed type and that at least one mode must oscillate 
and at least one must not. However, we note that all the modes 
oscillate, since eigenvalues of the k-matrix are given by 

eig( .N) = {-10 .377  _+ j l . 264 ,  

-12.401 + j6.359, -14.472_+ j8.558} 

For the sake of  completeness, the following example illustrates 
that the condition of  Inman et al. (1980) predicts mixed damp- 
ing although overdamping is actually observed. Consider 

Clearly, (C - C,,) is indefinite since e ig (C  - C,)  = { _+ I }. 
Again conditions of sufficiency of mixed damping presented by 
Inman et al. (1980) would predict that one of the modes oscil- 
lates and one of  them does not. Eigenvalues of the associated 
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Fig, 1 Trajectory in the complex plane for the six latent roots of the system de- 
scribed in the counter-example of Section 2,3, The variable ~ is the implicit parame- 
ter which varies along the trajectories, . 

matrix .A indicates overdamping, since e i g ( A )  = { -29.655,  
- 35.443, - 39.902, -47 .690  }. 

3 Genera l i za t ion  to a Class  of  N o n e o n s e r v a t i v e  Sys-  

tems 

In the previous section, matrices M,  C,  and K were assumed 
to be symmetric while M and C were assumed to he positive 
definite. In this section, results of the previous section are gener- 
alized to a class of systems known as the symmetrizable systems. 
With a suitable transformation, the equations of motion for this 
class of systems can be cast in terms of symmetric matrices 
and are discussed by Inman (1983).  Results of Inman et al. 
(1980) are generalized by Ahmadian et al. (1984) and are again 
incorrect for the cases of overdamping and mixed damping. In 
the present study, these results are modified appropriately. 

Assuming that the mass matrix is nonsingular, equations of 
motion can be expressed as 

I,,)t + f2~: + Kx = 0 (8) 

where (2 = M LC and K = M IK. No matrix is assumed to 
be symmetric at this stage which is why premultiplication by 
the inverse of mass matrix has been carried out, since preserving 
the symmetry is not the idea any more. It is now assumed that 
the matrices (2 and K are symmetrizable so that factorizations 
C = S~$2 and K = T tT2 are permissible (Inman, 1983), where 
matrices S~ and TL are real, symmetric, and positive definite, 
while S~ and Ta need only be symmetric. The condition for 
symmetrizability demands that at least one factor in the above 
factorization be common and so it is assumed that S~ = T~. 
Transforming the coordinates according to x ( t )  = S I/2y(t) and 
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Fig, 2 Imaginary part of the latent roots as a function of E, Note the existence of 
intervals of ~ in which the imaginary part is nonzero indicating the presence of 
underdamped modes, 
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premultiplying by S -1/2, we recast the governing equations of 
motion (8) in terms of symmetric coefficient matrices as 

I,y + Sl/~s~sl/~y + Sl/2T2S]/2y = 0. (9) 

Extension of the results obtained in the previous section is now 
straightforward. 

Condition 4 (Critical damping):  I f  2(Stt/2T2S]/2) t /2=  
S ]/2S2S [/2, then the system must be critically damped. 

Condition 5 (Underdamping):  I f  2(S[/2T2S~/2) l / z -  
(S ~/2S2S [/2) is positive definite then the system must be under- 
damped. 

Condition 6 (Overdamping):  I f  (S[/2S2S1/2) _ 
2(S ~/2TzS [/2),~ I,, is positive definite then the system must be 
overdamped. 

Here (SI/2T2SJl/2) ...... represents the largest eigenvalue of the 
matrix (S J/2T2S 1/2). The first two of these conditions are identi- 
cal to those presented by Ahmadian et al. (1984). The third 
condition presented there for overdamping states that, if 
S [/2S2S [/2 _ 2(S I/2T2S I / 2 )  1/2 is positive definite, then the sys- 
tem must be overdamped, which is incon'ect. The fourth condi- 
tion presented there for mixed damping based on indefiniteness 
of 2(S I/2T2S [/2)i/2 _ (S [/2S2S i/2) is also incorrect. 

3.1 Conditions in Terms of Matrices in the Physical Co- 
ordinates.  In this section, conditions in terms of matrices in 
the physical coordinates are derived. Unlike symmetric matri- 
ces, the quadratic form is not defined for a general case of real 
square arrays. Hence instead of definiteness of the matrices, 
conditions in terms of eigenvalues of the matrices are now 
presented. Substitution from the factorizations for C and KN, $2 
= SLIC. and T2 = SILK, into the expression ( S I 1 / 2 S 2 S 1 / 2 )  - 

2($1/2T2SI/2) I/2 results in S/1/2(C - 2K ~/2)SI/2, which is a 
similarity transform on (C - 2KS/a). Since similarity trans- 
forms preserve eigenvalues, definiteness properties can be ex- 
pressed in terms of eigenvalues of matrices involving M, C, 
and K.  Conditions 4 to 6 can now be expressed as follows: 

(1) If 2 ( M - I K ) i / 2  : M - t C ,  the system must be critically 
damped. 

(2) If [ 2 ( M - ~ K )  ~/~ - M IC] has its eigenvalues all posi- 
tive then the system must be underdamped. 

(3) If [M [C -i 1/2 - 2 ( M  K)  ...... I,,] has its eigenvalues all 
positive then the system must be overdamped. 

Here (M IK) . . . . .  represents the maximum eigenvalue of 
(M-~K) .  Once again, the first two conditions presented here 
are identical to those by Ahmadian et al. (1984). The condition 
for overdamping presented there is based on definiteness of 
[ M - t C  - 2(M-~K)~/2I,,] which is incorrect and is conse- 
quently modified here. Again, counter-examples can be con- 
structed for the cases of overdamping and mixed damping 
(Bhaskar 1992). 

4 The  D a m p i n g - R a t i o  Matr ix  

Analogy with a single-degree-of-freedom system suggests 
that the scalar quantity damping ratio could possibly be replaced 
by a matrix for a multi-degree-of-freedom system. An attempt 
of this can be found in Inman et al. (1987, 1989). A single 
matrix takes the role of damping ratios there and definiteness 
of the difference between this matrix and the identity matrix 
determines criticality for the system. However, we observe that 
the development of this matrix assumes the results of lnman et 
al. (1980), and consequently derives erroneous conclusions. In 
the following discussion, new results are presented in this light. 

The damping ratio matrix Z is defined as 

Z = C~7'/~C~7 ~ (10) 

which is exactly the same as the definition presented by Inman 
(1989). The sufficient conditions of criticality, presented there, 
are in terms of definiteness of (I,, - Z) .  As expected, the 
conditions for overdamping and mixed damping are incorrect 
there. The sufficient conditions for criticality presented in the 
Section 2 and Section 3 can now be expressed in terms of the 
damping ratio matrix Z as follows: 

( I )  If ( I ,  - Z )  : 0 then the system must be critically 
damped. 

(2) If the matrix (I,, - Z )  is positive definite then the 
system must be underdamped. 

(3) If { Z - diag (Am,x/A,)1/2 } is positive definite then the 
system must be overdamped. 

5 A p p l i c a t i o n  o f  the  T h e o r e m s  on E i g e n v a l u e  
B o u n d s  

Some useful information can be derived by mere inspection 
of the terms on the diagonal of the matrix (2A L/2 - C) and (C 
- 2A,~,(,~, I,,). It turns out that if entries on the diagonal of (2A I/2 
- C) are all positive and if, it is diagonally dominant, then the 
system must be underdamped. Similarly, if the entries on the 
diagonal of ((2 - 2A],(,]x I,,) are all positive and if, it is diagonally 
dominant, then the system must be overdamped. These results 
follow immediately by applying the well-known Gerschgorin's 
theorems (1931). In this section, A denotes the matrix (2A ~2 
- C) which is a real and symmetric matrix. 

Given that the entries on the diagonal of the matrix A are all 
positive, it can be concluded that if the centers of the Gersch- 
gorin discs fall on the positive real axis, and if A is diagonally 
dominant, then none of the disks fall in the left half of the 
complex plane. Therefore, all the eigenvalues of A must be in 
the right half of the complex plane. Hence the matrix A must 
be positive definite, which is sufficient for underdamping of the 
system. On similar lines it could be shown that if another matrix 
say B = (1~ - 2A)~ I,,) is diagonally dominant and if, all the 
entries on its diagonal are positive, then the system must be 
overdamped. It is noted that all of these conditions are only 
sufficient but not necessary. 

Conditions of the previous theorem may become stringent at 
times and a further refinement is possible using the following 
theorem due to Brauer (1946, 1947). 

Theorem 1 (Brauer).  Every eigenvalue o f  a matrix A lies 
in the interior or on the boundary o f  at least one o f  the fidlowing 
½n(n - 1 ) Cassini ovals on the complex z-plane 

I z - A , I I z - & j [  - < ~ '  IA, I ~ '  IAj~I, i ~ j .  (11) 
r s 

The proof can be found in Brauer (1946, 1947). The above 
condition may appear to be complicated, but a simple extension 
of the conclusions reached earlier on the basis of Gerschgorin's 
theorem can be obtained. For a real matrix (which is the case), 
the ovals must be symmetric about the real axis and about the 
line x = (Aii + Ajj)/2.  The ovals for this situation intersect the 
real axis and satisfy (x - A i i ) ( x  - Ajj) = ~7icrj at the points of 

n' 
intersection on the x-axis, where ~ri = ,_Zl I Ai, I. Solving the 

quadratic, the following roots are obtained: 

Xl.2 = ( a ,  + Ajj) _+ (1/2)~/(a ,  - Ajj) 2 + 4crio~j. (12) 

Note that the discriminant is always positive, which is expected 
since the roots must remain real. In order that the ovals remain 
in the right half of the complex plane, both x~ and x2 must be 
positive, i.e. (Ai i+ A)j) 2 >>- ( A i i -  Ajj) 2 + 4~7icrj. Rearranging 
this inequality leads to 

(Aii/cri)(Ajj/crj) -> 1, for all i , . j .  (13) 
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This result was obtained for general Hermitian matrices in 
Brauer (1947). It also follows from a more general theorem 
for complex matrices given in Brauer (1946). Here a simplified 
result is presented for the case of general real matrices (which 
may not necessarily be symmetric and hence not Hermitian). 
It should be noted that for asymmetric real matrices, Cassini 
ovals are symmetric about the real axis. The asymmetric formu- 
lation of Section 3 then allows us to apply these results to 
symmetrizable systems also. 

Clearly, the condition in the inequality (13) is more relaxed 
than the one obtained through Gerschgorin's theorem, since 
whenever the latter is satisfied (i.e., diagonal dominance is ob- 
served), (13) is automatically satisfied. Inequality (13) allows 
the violation of dominance by at the most one row (or column). 
All that one needs to check is whether product of the smallest 
and the next smallest of the numbers (AJa~)  exceeds unity. 
When A is replaced by (2A j/2 - C) in the previous discussion 
of this section, inequality (13) provides a sufficient condition 
for underdamping. Similarly, when (C - 2A,~(~x I~) replaces A, 
a sufficient condition for overdamping is obtained. 

6 C o u p l i n g  o f  S i n g l e - D e g r e e - o f - F r e e d o m  O s c i l l a t o r s  

Consider a collection of single-degree-of-freedom oscillators, 
each of which is critically damped. These oscillators are then 
coupled through dashpots such that the mass elements only are 
connected through these new dashpots while the spring and the 
dashpots of the originally uncoupled oscillators remain 
grounded. If the statements of Ahmadian (1984), Inman et al. 
(1980, 1989) regarding overdamping were correct, it would 
imply that, coupling these individual oscillators via additional 
dashpot elements would always result in an overdamped system 
for any positive damping. This follows from the fact that in the 
equations of motion for the coupled system, the mass and stiff- 
ness matrices are diagonal and the damping matrix is such that 
(C - 2A ~/2) has terms on its diagonal greater than the sum of 
the absolute values of the terms off the diagonal. Applying 
Gerschgorin's theorem it is observed that none of the eigenval- 
ues of (C - 2A 1/2) fall in the left half of the complex plane. 
This, as seen earlier, does not guarantee overdamping. Thus 
a collection of overdamped oscillators may, in fact, exhibit 
underdamped modes when coupled through additional dashpot 
elements, t However, the condition of overdamping presented in 
this paper, offers a class of overdamped oscillators, which when 
coupled through further dashpot elements remain overdamped. 
This is expressed through the following lemma. 

Lemma 1 I f  each of  the oscillators in a collection of  single- 
degree-of-J?eedom oscillators' with mass, dashpot constant, and 
stiffness for  the ith oscillator as m~, ce and k~ is overdamped in 
such a way, that ( c i / m i )  ~ max~ 2(k,./m,.)J/2 for  all i, then 
coupling the oscillators with further dashpots of  any arbitrary 
values always produces a coupled system which is overdamped. 

The prove this, consider a collection of n single-degree-of- 
freedom oscillators with mass, stiffness and dashpot constants 
as mz, k~ and c~ associated to the ith oscillator. Since each of 
these is overdamped in the manner described above, we have 

( c i / m i )  - -  2 m a x  (kr/mr) 112 ~ 0 for all i. (14) 
r 

The dashpot connecting ith oscillator to the j th  one is denoted 
by the dashpot constant equal to c 0. Premultiplying by inverse 
of the mass matrix, elements of the matrix (C - 1/2 - 2K ..... I . )  on 
its diagonal are obtained as 

n 

Cii - 2K1~/5 = [ci + Y, cij/mi] - max 2(kflm,.) I/z (15) 
r j=l 

and those off the diagonal on the ith row andj th  column as 

C~: = -c/Jm~ when i ~:j .  (16) 

Note that Eq. (16) is not symmetric in i and j so that (C - 
2K ],(~x I,,) is not symmetric. The conditions of symmetrizability 
of Section 3 are satisfied by the present class of systems since 
each of the matrices C and K have a common symmetric factor, 
viz. inverse of the mass matrix (which is diagonal). Since M 
and K are diagonal matrices, (M ~K) ...... = max,(k,/m,.) is the 
maximum eigenvalue of (M ~K). Using conditions of Eq. 
(14); Eqs. (15) and (16) imply that ((2 - ~/2 - 2K ...... I,) is diago- 
nally dominant. Using Gerschgorin's theorem and the condi- 
tions of overdamping stated in Section 3.1,.it is concluded that 
the system must be overdamped. Two further special cases arise: 
I f  a collection of  overdamped oscillators is such that the ratio 
of  stiffness to inertia or the ratio of  dashpot constant to inertia 
is the same for  each one of  them, then coupling these oscillators' 
with dashpots of  any arbitrary value always results in an over- 
damped system. 

Application of Brauer's theorem, using Cassini-ovals as the 
basis for choosing regions of eigenvalue bounds, results in a 
more liberal condition. It could be shown after some algebra 
that the coupled system is overdamped if 

(1 + 6i/o-i)(1 + ~j/oj) ~ 1, forall i , j  (17) 

n ' 

where, 6i = [ci/mi - max,. 2(k,./m,.)~/2], and ai = :E I cij. It is 

easy to see that, inequality (17) always holds if the condition 
of Lemma 1 holds since 6s is always positive for all i when the 
latter is satisfied. 

Consider coupling the underdamped oscillators next. On the 
lines of Eqs. ( 15 ) and (16), elements of 2K ~/2 _ C. ~:2 are given 
by 

n '  

2/(]i/2 - Cii = 2(k i /mi)  I/2 - [ci + Y. cu/mi] (18) 
j = l  

and 

- - 1 / 2  2Kij - Cij : c i j / m i ,  i ~ j .  (19) 

It could be seen in this instance that, if 2(ki/m~ )~/2 _ (ci/m~) 
> 2(Z:  I co)/mi then, the matrix (2K l/2 - ~1/2) is diagonally 
dominant and has positive numbers on its diagonal. Hence 
(2g: ~/2 _ ~_. t/2) is positive definite. This leads to the following 
result. 

Lemma 2 I f  a collection of  underdamped single-degree-of 
a@eedom oscillators having mass, stiJ~hess, and dashpot constant 
associated with the ith oscillator equal to m~, k~ and c~ respec- 
tively, is connected through additional dashpots of  constant c U 
that connect the ith oscillator to the j th one and which satisJ3, 
2(  ki/mi ) I/2 ( cl/mi ) > 2( E ' co)mr then connecting the oscilla- 

j = l  

tors through such additional dampers always produces an un- 
derdamped system. 

Cassini-ovals can still relax the condition but they yield to 
a cumbersome result and thus it is omitted from the present 
discussion. 

7 C o n c l u s i o n s  

A set of sufficient conditions was presented for criticality in 
terms of matrices involved in the governing equations of mo- 
tion, when they are expressed in the modal coordinates. This 
was later extended to the case of general asymmetric (but sym- 
metrizable) systems. Similar conditions available in the litera- 
ture for the cases of overdamping and mixed damping were 
found to be incorrect. This was shown through some counter- 
examples. The theorems on eigenvalue bounds were applied to 
infer criticality of a multi-degree-of-freedom system. This may 
lead to computational saving in practical applications. Two 
cases when underdamped oscillators remain underdamped, 
when coupled through additional dampers, and when over- 
damped oscillators remain overdamped, when coupled through 
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similar elements were discussed in the perspective of the suffi- 
cient conditions presented here. It is emphasized that all these 
conditions are only sufficient but not necessary. However, when 
the equations of motion decouple (i.e., when damping is classi- 
cal), they become both necessary and sufficient. 
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Dynamic Analysis of the Axially 
Str= g Based on Moving n Wave 

Propagation 
In this paper, we present an exact solution for  the linear, transverse response of  an 
axially moving string with general boundary conditions. The solution is derived in 
the .frequency domain and interpreted in terms of  wave propagation Junctions. The 
boundary effects are included by the use o f  compliance functions at the boundaries. 
The response in the time domain involves only several convolution integrals which 
can easily be obtained for  many physical boundary conditions. A comparison of  this 
method with an existing solution method shows that this method requires much less 
computation time. The transient response of  the translating string with a spring or 
a dashpot at a boundary is presented. It is shown that complete wave absorption 
occurs at a boundary when that boundary has a dashpot with damping coefficient 
equal to the propagation speed of  the reflected wave. 

1 Introduction 
Many mechanical devices use a slender, translating element 

as a means of transmitting power, material, or information. 
Examples include chain and belt drives, magnetic recording 
devices, band saws, and paper handling machinery. These struc- 
tural elements are commonly termed as axially moving materi- 
als. The translating string model or the classical moving thread- 
line theory (Swope and Ames, 1963) is the simplest that de- 
scribes the dynamic response of many axially moving material 
systems. A literature summary on the vibration and stability of 
axially moving materials can be found in Wickert and Mote 
(1988). 

The steady-state response of the axially moving string can 
easily be evaluated by several available techniques such as the 
modal analysis and Green's function method (Wickert and 
Mote, 1990) or the transfer function method (Yang and Tan, 
1992). However, in many important industrial applications, 
such as the impact of chain drives during engagement with 
sprockets (Wang and Liu, 1991) or cables transporting materi- 
als (Wickert and Mote, 1991 ; Zhu and Mote, 1994), the axially 
moving material is continuously subjected to time-dependent 
forces and hence no steady-state solution exists for those prob- 
lems. 

Several solution techniques for the string problem have been 
reported in the literature. The classical D'Alembert 's  wave solu- 
tion (Graft, 1975) is derived for an infinite or a semi-infinite 
nontranslating string. Hence, general boundary conditions can- 
not be considered in the analysis. Though the Green's function- 
modal analysis technique proposed by Wickert and Mote (1990) 
gives an exact solution, it involves a series expansion and, for 
second-order systems such as the translating string, many terms 
are needed for the convergence of the solution. Moreover, the 
method requires the knowledge of the system eigenfunctions 
and hence cannot be easily extended to systems with general 
boundary conditions. Nevertheless, the modal analysis tech- 
nique gives a useful solution to the free and forced response 
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problems. The method of characteristics, which is useful for 
solving hyperbolic systems, provides an interesting interpreta- 
tion of the response in terms of the physical phenomenon of 
wave propagation. However, it cannot be easily applied to sys- 
tems with general boundary conditions. With an increasing de- 
mand of using axially moving structural elements in high preci- 
sion machinery, development of vibration control techniques 
also relies on the availability of relatively simple response solu- 
tion techniques. Despite the usefulness of the translating string 
model and the availability of existing solution methods, no 
simple solution for both the transient response and the active 
vibration control has been proposed. 

The purpose of this paper is to apply the transfer function 
formulation and the concept of wave propagation (Perkins, 
1990; Tan and Zhang, 1994) to derive an exact response solu- 
tion for the axially moving string under general boundary condi- 
tions. The response is easily computed by evaluating several 
time-convolution integrals. It will be shown that the method 
does not require a knowledge of the system eigenfunctions and 
provides physical interpretations of the response in terms of 
wave propagation. This method has also proven to be useful in 
the design of active vibration control (Ying and Tan, 1996). 
In Section 2, the problem formulation is described, and the 
response of the axially moving string is given in Section 3. 
Interpretation of the solution in terms of wave propagation func- 
tions is provided in Sections 4 and 5. Results for the response 
of a string with a spring or a dashpot at a boundary are presented 
in Section 6. 

2 Problem Formulat ion  

Figure 1 shows an axially moving string of uniform density 
p and under constant tension P, traveling at a constant transport 
velocity V between two arbitrary boundaries separated by a 
distance L. The string is excited transversely by a distributed 
external force F(X,  T).  By Hamilton's Principle, the equation 
of motion governing the transverse displacement W ( X ,  T) is 
(Archibald and Emslie, 1958) 

p(W,rr + 2VW,xr + V2W,xx) - PW,xx = F(X,  T) (1) 

where ( . ) , r  denotes O/OT(. ), ( . ) , x  denotes O/OX (. ). Using 
the following nondimensional variables 
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W(X, T) 

F(X,~) 

I v 

- I ) , . .x  

Fig, 1 A schematic of the axially moving string 

X W F L  
x = L ' w L ' f P 

= , c V P t = (2) 

the normalized equation of motion is 

w, , , ( x ,  t) + 2cw,xr (x ,  t) - ( 1 - c2)w, . ,~(x,  t) = f ( x ,  t ) ,  

x ~  (0, 1), t >- 0. (3) 

The initial conditions are specified as 

w ( x ,  t ) l ,  o = u(,(x), w,(x, t)l ,=o = v,)(x), x ~ (0, 1) (4) 

and the boundary conditions of the string assume the general 
form 

Mw(x ,  t)l., o = y , o ( t ) ,  t -> 0 (5a)  

and 

Nw(x ,  t)l . , : ,  = y B l ( t ) ,  t >- 0 (5b) 

where M and N are second-order temporal-spatial, linear differ- 
ential operators. When the transport speed exceeds the critical 
speed, c >- c,,. = 1, the system experiences a buckling type of 
instability (Mote, 1965). In the present study, assume c < 1. 

The basic wave propagation characteristics in the axially 
moving string can be understood by considering the homoge- 
neous equation of (3) and introducing the change of variables 

= x -  (1 + c ) t ,  z 1 = x + (1 c ) t .  (6) 

ingly, the Laplace transform of Eqns. ( 3 ) -  (5) with respect to 
t gives 

0_ 
s2~(x,  s) + 2 c s  ~x  #(x ,  s) - (1 - c 2) Ox 2 HT(x, s) 

= f , ( x ,  s)  (8a)  

0 
r e ( x ,  s) = f ( x ,  s) + su0(x) + vo(x)  + 2C-~x Uo(X) (8b) 

~ w ( x ,  s ) lx :o  -- ao(s)v~(O,  s)  + B0(s)w,x(0, s) 

= ~BO + ~ o  ------ ~,o(S) (8C) 

bTv~(x, s)[.,.=, = A, ( s )W(I ,  s) + Bi(s)v~,~(1, s) 

= ~ . l  + ~lt -= ~, l (s)  (8d)  

where s is the complex Laplace transform variable, ~ ( . ,  s),  
f ( ' ,  s) and ~ . j ( s )  are the Laplace transform of w( . ,  t), f ( ' ,  
t) ,  and y . j ( t ) ,  respectively, and %j(s)  is a polynomial of s 
representing the initial conditions at the boundaries x = 0, 1. 
Henceforth, the index j = 0, 1 is used to denote the left and 
right boundaries, respectively./~/and N7 are the operators M and 
N with their time derivative operators O/Ot and 02/Ot  2 replaced 
by s and s 2, respectively. 

From (6) and (7) ,  the basic wave solution of the nondisper- 
sive string medium is of the form e ~(~t-t~) where k = ~/vp is 
the wave number and Up is the phase velocity, or in complex 
notation, e ("+~X) where X is a complex wave number. From 
(8a) ,  the characteristic roots of the homogeneous equation are 

S - - S  
- -  , h 2 -- (9 )  

Xa 1 - c  1 + c  

Here, Xl and Xz are the complex wave numbers of the backward 
and forward propagating waves, respectively. 

The exact response solution to (8a-d) is 

fo' t ~ ( x ,  s )  = G(x, ~, s ) f . ( L  s)d~ + Z hi(x, s )~ (s )  (lO) 
j =0 

where the closed-form transfer function G ( x ,  ~, s)  and the 
influence functions h:(x ,  s)  of the translating string can be 
evaluated explicitly (Yang and Tan, 1992) 

G(x, ~, s) = 
Oo(s)e x~' x,z + Oo(s)Ol 

+ Ol(s)eX2(l-~)-a,(l-x) + Oo(s)Ol(s)eX<~,(t+<-x) 
, x > - ~  

2s ( l  - Oo(s)Ol(s)e  as-x,) 

(s)eX2(l+~ ~) ~ + e-X,(~ ~ ~) + Ol(s)eX~(l-o-x,(  1~.o 
, x _ < ~  

2s( 1 - Oo(s)O, (s)e x~-x,) 

( l l a )  

The homogeneous "wave equation" of (3) then becomes 

0 2 w ( ~ ,  ~7) _ O. (7) 

Based on the classical D'Alembert 's  solution for the non- 
translating string problem (Graft, 1975), the solution of (7) ,  
using (6) ,  consists of disturbances propagating to the right at 
speed 1 + c and to the left at speed 1 - c. These are the 
forward and backward propagating waves, respectively. 

3 R e s p o n s e  o f  the  A x i a l l y  M o v i n g  S t r i n g  

The response and spectrum of the axially moving string under 
specified initial conditions and external distm'bances can be 
determined from the system transfer functions. Evaluation of 
transfer functions for one-dimensional distributed parameter 
systems has been presented by Yang and Tan (1992). Accord- 

and 

eX2 , + 01(s)eX2-at °-'~) 
ho(x ,  s) = (1 lb )  

1 - O o ( s ) O l ( s ) e X : h  

e x,(,-x) + 00(s)eX2,--xt 
h i ( x ,  s) = ( l l c )  

1 - Oo(s)O,(s)eX<Xa 

By (10) and (1 lb-c) ,  the excitations yj(s)  are 

7,o(S) 
% ( s )  = A0(s) + k2Bo(s)  " (12a) 

~/ , , (s )  
~ l ( s )  = AL(s )  + ktBi(s)  " (12b) 

Note that (12a-b) represent normalizations since a spatial trans- 
form of Ajv~ + Bjw,x gives (A: + k B j ) ~ ,  where d i s  the spatial 
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Table 1 

Type 

Fixed 

Free 

Types of boundary conditions and the corresponding compliance functions 

Diagram Boundary Condition Compliance Function 

; X  

Spring ; x 

w • •  
Dashpot ~ x 

~o 

Mass ; x 

w(O, t) = o 

w,~(o,t)= o 

kow(O, t ) -  (1 - c2)w,~ (o, t) = o 

Z o (s) = 0 

Zo(s) = 

-1 
Zo(~)=~o 

~ow t(O, t)- (1 - c 2)w,~ (0 t) = 0 
-I 

Zo (~,) = o~7 

mow,,, (0, t ) -  (1 -c2)w,x (O,t) = 0 -1 
Zo(s ) = S2mo 

t ransform of ~ .  Moreover,  % (s )  is associated with k2; agreeing 
with the physics that only forward propagating waves are gener- 
ated into the medium from the boundary at x = 0. Same reason- 
ing can be applied to (12b) .  In ( 1 l a -c ) ,  the complex boundary 
coefficient functions are 

1 + (1 + c ) sZo( s )  
O o ( s )  = - 

1 - (1 - c ) sZo( s )  

1 + ( 1  - c ) s Z l ( s )  
O ~ ( s )  = - (13) 

1 - (1 + c )SZ l (S  ) 

where the complex compliance functions (d isp lacement / force)  
Zj ( s )  are defined as 

-~v(0, s) 
Z o (  s )  = 

(1 - c2)~v,x(0, s) ' 

~ (  1, s)  
Z I ( S  ) = (14)  

(1 - c2)u~,x(1, s)  " 

It should be noted that the exponential  functions in (1 l a -c )  
represent delay functions in the t ime domain. For example, 
e x2 (x ~) is associated with a forward propagating wave traveling 
from ~ (where  the disturbance is applied) to x (where  the re- 
sponse is measured) .  From ( 1 l a ) ,  the eigenvalues of the axially 
moving  string system can be determined from the characteristic 
equation 

1 - Oo(s)Ol(s)eX2 -~, = 0. (15)  

4 I n t e r p r e t a t i o n  o f  the  R e s p o n s e  in  T e r m s  o f  W a v e  
P r o p a g a t i o n  

4.1 Type of  Boundaries .  When a wave is incident at a 
boundary,  the wave is either completely, partially, or not re- 
flected from the boundary. In this formulation, the wave propa- 
gation characteristics across a boundary are determined by 
Oj(s). Table 1 lists a set of  typical boundary conditions (shown 
for x = 0) and their corresponding compliance functions, where 
it is assumed that w,x = 0 at x = 0 - .  For the purpose of 
discussion, consider a backward propagating wave incident at 
the boundary x = 0. The physics of wave propagation at x = 1 
can be interpreted in a similar manner.  As the wave approaches x 

= 0, it is well known that an image (forward propagating) wave 
is generated such that the specific boundary condition can be 
satisfied (Graft ,  1975).  From (10 ) ,  (1 la -c ) ,  it can be shown 
that Oo(s) is the displacement  ratio of the reflected wave over 
the incident wave. 

Consider the case of a fixed boundary condition at x = 0. 
This is an example of complete wave reflection. From Table 1, 
Zo(s)  = 0. Hence Oo(s) = - 1 .  This is a wel l -known result 
stating that the wave is totally ref lected and the signs of the 
displacements of the incident and reflected waves are opposite. 
From (15)  and for the case of fixed-fixed boundary conditions, 
the eigenvalues of axially moving string are 

R k =  ikTr(l - c2), k = _+1,_+2 . . . . .  i = ~ .  (16)  

Note that s = 0 is not an eigenvalue because lira G ( x ,  4, s) is 

finite. 
Consider a free boundary condition at x = 0. This is an 

example of partial wave reflection. From Table 1, Zo(s)  = co, 
and from (13) ,  Oo(s) = (1 + c ) / ( l  - c) ,  stating that the 
displacement  ratio of  the reflected wave over the incident wave 
equals the ratio of the propagation speeds. Note that, in order 
to satisfy the free end boundary condition w,x(0, t) = 0, the 
displacement of the reflected wave must  have the same sign as 
that of the incident wave. 

Consider  the boundary condi t ion  with a dashpot. From Table 
1, Zo(s)  = ( - l / s / 3 0 )  where/30 is the damping coefficient. The 
boundary coefficient function is 

(1 + c) -/30 
Oe(s) - ( 1 7 )  

(1 - c )  +/30 

It is interesting to note that if/3o = 1 + c (speed of the forward 
propagating wave) ,  no ( forward propagating)  wave will be 
reflected. In other words, the boundary absorbs all the wave 
energy. This phenomenon is noted by Hull (1994)  for the longi- 
tudinal vibration problem of a bar with a viscous damper  at one 
end. However,  in that problem, both propagation speeds are 
equal and the conclusion that, for complete wave absorption, 
/3o equals the propagation speed of the reflected wave cannot  
be drawn. It can also be shown that, for the axially moving  
string problem, the active boundary wave cancellation control 
(Chung  and Tan, 1995) is equivalent to applying a passive 
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dashpot with the damping coefficient equals to l + c ( if  damper 
located at x = 0) or 1 - c ( i f  damper located at x = 1). 

4.2 Response in Terms of Propagation Functions. 
Based on ( l  la-c) ,  the following propagation functions of the 
translating string are defined 

1 [eX2(x ~ ) G~(x ,  ~, s) = ~s + O°(s)eX~" ~'<]' x > { (18a) 

1 
G,,(x,  ~, s) = ~ [O,(s)e~:~'-~)-~, ('-~> 

+ Oo(S)O~(s)e a~ a,( '< *)], x > { (18b) 

1 
G~(x ,  ~, s) = 2.--7 [O°(s)eX: x,e 

+ Oo(s)O,(s)e a2<>' ~) a,I, x < ~ (18c)  

1 [e ~,< '~ O,(s)ea= <~ ~> ~,(~ G~(x,  ~, s) = ~ + 'q ,  

x < {  (18d)  

Ha (x, s) = e x2t (19a) 

Ho(x ,  s) = Ol(s)e x: x,(i ~) (19b) 

Hi~ (x, s) = Oo(s)ea~ ' x, (19c)  

H i ( x ,  s) = e ~,~1-.~). (19d)  

The G propagation functions represent wave disturbances in 
response to both external excitations and initial conditions, 
while the H propagation functions are wave disturbances in 
response to boundary excitations. Understanding the physical 
phenomena associated with these propagation functions is cru- 
cial to the dynamic analysis of the translating string system. 
Define the region to the right (left) of the applied force as 
downstream (upstream). In (18a-d),  the subscripts D and U 
denote the downstream and upstream positions, respectively, 
while superscripts + and - denote the forward and backward 
directions of wave propagation, respectively. Moreover, the 
subscripts 0 and 1 in (19a-d) denote the boundaries at x = 0, 
l respectively. Using the G and H propagation functions, the 
transverse response of axially moving string is expressed as 

~(x ,  s) = Oo(s)O,(s)e ~2 x,~7(x, s) 

+ [G;(x, ~, s) + a ; ( x ,  ~, s)lf,,(~, s)d~ 
) 

+ [a~(x ,  ~, s) + G~(x,  ~, s)]f~.(~, s)d~ 

1 

+ Y~ [W(x, s) + Hi(x, s)l%(s). (20) 
j - o  

In view of (20),  the response consists of a resident wave (the 
first term) and propagating waves due to external excitations, 
initial conditions, and boundary conditions. 

Consider the response to a unit impulse applied at ~, under 
zero initial conditions and homogeneous boundary conditions. 
From (20) 

~v(x, s) = Oo(s)O,(s)e~ ~.m(x, s) 

+ [ G ~ ( x , ~ , s )  + Gt>(x,~.,s)],  x > ~ (21a) 

~(x ,  s) = Oo(s)O,(s)ea~-a,~(x, s) 

+ [ G ~ ( x , { , s )  + G ~ ( x , ~ , s ) ] ,  x < (. (21b) 

The G propagation functions are thus unit impulse response 
functions, which are time-delayed Heaviside functions in the 
time domain. In response to the applied impulse, G}~(x, ~, s) 

represents the propagation of the forward wave in the down- 
stream region. From (18a) ,  it is easy to see that G}~(x, y, s) 
consists of a forward wave propagating directly from the applied 
source (the first term) and a forward wave which is reflected 
from the boundary x = 0 (the second term). This is illustrated 
in (a) and (b) of Table 2. Similarly, GD(x, ~, s) represents the 
propagation of the backward wave in the downstream region. 
It consists of a backward wave reflected from x = 1 (the first 
term) and a backward wave propagating directly from the source 
and reflected from both boundaries (the second term); see (c)  
and (d) of Table 2. Similar physical meanings can be derived 
for G +, Gi) and H propagation functions. The term 
Oo(s)O~(s)e ~ x,~(x,  s) involves boundary coefficient func- 
tions and a delayed function. The inverse Laplace transform of 
this term gives w0~ (x, t - t,<~) where w0~ (x, t - t,a) is the inverse 
Laplace transform of 00 (s) 0~ (s) ~7( x, s) and the total time delay 
t~,~ = ( 1 /( I + c))  + ( 1 /(  1 - c))  is the time required for a wave 
to propagate from the location x, reflected by both boundaries 
(separated by a distance l = 1 ), and back to x. 

5 Construct ion of  Propagat ion Functions Based on 
Wave  Propagat ion 

The representation of the response solution by (20) is based 
on consideration of physical phenomena (wave propagation). 
Hence the transverse response of the translating string system 
can be obtained once the propagation functions are constructed 
and there is no need to determine the system transfer functions. 
In this section, it is demonstrated how the wave propagation 
concept can be applied to construct the propagation functions. 
For the purpose of discussion, only the G functions for x > 
(see Table 2),  i.e., G~ and G)~, are considered. Construction 
of G functions for ~ > x can be done in a similar manner. 

Apply an external excitation at ~. According to the classical 
D 'Alember t ' s  solution of the wave Eq. (3) ,  the source produces 
two waves: one propagates along the translating string in the 
forward direction at speed 1 + c and the other propagates in 
the backward direction at speed 1 - c. If  a sensor is placed at 
position x, only four components of propagating waves will be 
measured between the time the excitation is applied and a time 
t,a later. These basic waves are illustrated in Table 2: (a) a 
forward wave propagating directly from the source at ~ to x, 
(b) a backward wave emanating from ~ is reflected from the 
left boundary and propagates forward to x, (c) a forward wave 
emanating from ~ is reflected from the right boundary and prop- 
agates back to x, (d) a backward wave emanating fi'om ~ is 
reflected from both boundaries and then propagates backward 
to x. Each wave component can be expressed by a time delay 
function. For example, the wave component (a) involves a delay 
function e~  ~ "~). The time delay ta is given by 

x - ~  
& - (22) 

l + c  

since the distance and speed of  wave propagation are x - ~" and 
I + c, respectively. The delay function e~(x ~ = 
e (' ~>/<~ ")~ = e ',: corresponds to a forward wave and hence 
is part of G ~ in (18a) .  However, since the effect of an excitation 
is convoluted in the time domain, the time delay function should 
be multiplied by a factor l / s .  (Note that the inverse Laplace 
transform of (e - t : / s )  is ..q/'(t - t,/), where 5~'(. ) is the 
Heaviside function.) In addition, the strength of the excitation 
is split between the forward and backward propagating waves. 
This is indicated by the factor ½ in (18a).  Three of the basic 
waves illustrated in Table 2 are reflected from one or both 
boundaries. Each time a reflection occurs, the delay function 
is multiplied by Oj(s). Based on the above discussion, the G 
propagation functions shown in (18a-d) can be constructed 
without reverting to the transfer function formulation. 
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Type 

(a) 

Table 2 Interpretation of wave propagation functions (x > # case) 

Components of 
Propagation Functions 

Wave Propagation Phenomena 

A ~  k 
• v - - 

(b) 

(c) 

O0(s)e z:-z'¢ . tx 

0 , , x , ,  0 

O1 ( s ) e Z ~  (I-¢)-~, (I-x) 0 

(d) Oo(s)Ol(s) ez:z'O+~-x) 

O, g't k 
• v - -  

I I ~q ~ 0 
x X2 

G , , ~,, 0 

The propagation functions H can be constructed by applying 
similar ideas. In either case of x > ( or ( > x, there are only 
two basic wave components• Moreover, since the source comes 
from the boundary, no incident wave is considered at that bound- 
ary. Consider an excitation at x = 0 and a sensor placed at 
the position x. Two components of propagating waves will be 
measured between the time the excitation is applied and a time 
t,e later• They are (a) a forward wave propagating directly from 
the source to x, (b) a wave emanating from the source is reflected 
from the fight boundary and propagates backward to x. 

In summary, the propagation functions can be constructed 
based on following steps: 

1 find ~.t, kz, the complex wave numbers of the backward and 
forward waves, respectively; 

2 determine the time delay td of each component of the delay 
functions; 

3 determine the compliance functions Z~(s) based on the phys- 
ical boundary conditions; 

4 establish the complex boundary coefficient functions Oj(s) 
based on k~, k2 and Zj(s) ;  and 

5 construct the propagation functions as a sum of appropriate 
delay functions• 

By step 1, it is noted that this method is suitable for other 
hyperbolic systems with general boundary conditions. If the 

system is nondispersive, the exponential functions, say 
e×2 (x-~), can easily be inverted as time delay functions, and 
evaluation of the transient response poses no major difficulty• 
For dispersive systems, the analysis procedure outlined is still 
valid• However, the Laplace inversion does not lead to simple 
time-delay properties, and numerical inversion of (20) is re- 
quired for the system response. 

6 Examples and Results 
Two sets of boundary conditions are considered to determine 

the exact transient response of the axially moving string by the 
present method. In all simulations, the left boundary is fixed 
and the right boundary is either spring-loaded (which becomes 
fixed when k~ --* w) or has a dashpot. All computations were 
conducted using MATLAB ® on a Sun Sparc 690MP Worksta- 
tion. The transport speed c is chosen to be 0.3. An external 
force of a half-cycle sinusoidal impulse is applied at d = 0.5 

f ( x ,  t )  

= 6(x - d)[Y~C(t) - oa((t - 0.125)](167r cos 87rt) (23) 

The response in time domain can easily be derived from the 
results in the frequency domain. From (20),  assuming zero 
initial conditions and homogeneous boundary conditions, the 
response to the point force (23) is 

~7(x, s)(1 - Oo(s)Ol(s)e (x2-x,)) 

[ eN(X-d) + Oo(s)eX2X-x,a + Ot(s)eX2(x-d)-x,(t-x) + Oo(s)O,(s)e×2 a~(l+d x) 1 
2S fo(S), 

[O0(s)ek2x-~ld + Oo(S)Ol(S)ek2(l+x-d)-kt + e-kl(d X) + Ol(~)e h2(l d) kl(l x) ] 
2s fo(s) ,  

d < - x  

x < - d  

(24) 
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Fig. 2 Transient response of the axially moving string with fixed-fixed 
boundary conditions, Arrows indicate directions of wave propagation. 

where 

, f ( x ,  s) = 5 ( x  - d ) f o ( s ) .  (25) 

The exact response at any instant is obtained by inverting 
(24),  which is straightforward, especially for the boundary con- 
ditions considered here. To see this, consider the second term 
on the right-hand side of  (24) tbr x -> d 

e x2+-xp = e (c~/~l+,:~)+u//<t-~.1~),. (26) 

The response in the time domain is then a delayed convolution 
of the excitation and Oo(s) with the time delay t,~ = x / (  1 + c) 
+ d / ( 1  - c ) .  

Figure 2 shows the wave propagation in the axially moving 
string with fixed-fixed boundaries. In this case, the boundary 
coefficient functions Oo(s), O~ ( s )  are - 1 .  It is readily seen that 
the speed of the forward wave is faster than the speed of the 
backward wave. Moreover, it is clearly seen that the reflected 
waves from the boundaries have the same shapes as the incident 
waves. To verify the usefulness of  this solution, a comparison 
on the computation efficiency of this method with the modal 
analysis method (Wickert and Mote, 1990) was made for this 
problem, with 80 divisions in the x-domain. The string response 
was calculated for 150 time instants between t = 0 and t = 
0.206. It was found that about 200 terms were needed in the 
modal analysis expansion series for close agreement with the 
exact solution. Moreover , our method required only 20 seconds 
of CPU time, while it took about 130 minutes using the modal 
analysis method with 200 terms in the expansion series. It 
should be noted that the computation time using the modal 
analysis method can be reduced if a closed-fbrm expression of 
the Green's  function or a table look-up method is used. 

Figure 3 shows the wave propagation in the axially moving 
string with the right boundary supported by a spring (k~ = 5). 
The wave incident at the spring boundary (x = 1) undergoes 
considerable distortion during the reflection process. 

Figure 4 shows the exact response when the right boundary 
is supported by a dashpot. From (24),  the exact response for 
this case is 

w ( x ,  t) = Oo01W(X, t - t,/) + F ( t  - tt) + OoF(t - t2) 

+ 01F( t  - t3) + OoO~F(t t4), d < x 

w ( x ,  t)  = OoOlW(X, t - t,j) + F ( t  - is) + OoF(t - &) 

+ 0 i F ( t -  tv) + O o O i F ( t -  &) ,  d > x  (27) 

where Oo(s) = - l ,  On(s) = ((1 - c) - /3~)/((1 + c) + /3~), 
are constants, and 
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Fig. 3 Transient response of the axially moving string; the left boundary 
is fixed and the right boundary is spring-loaded. Arrows indicate direc- 
tions of wave propagation. 

F ( t )  = 2134(t)  - .?((t - 0.125)] sin (8~rt) (28a)  

x - d  x d 
h -  , t 2 - - - + - -  

l + c  l + c  l - c  

1 - d  l - x  1 
t3 - + - -  t 4 - -  

l + c  I - c  l + c  

l + d - x  
_ - -  .Jr. 

l - - c  

d - x x d 
= , t+, - - -  + - -  

ts 1 - c  1 + c  1 - c  

1 - d  1 - x  l + x - d  1 
t 7 -  + - - ,  & -  + (28b) 

l + c  1 - c  l + c  1 - c  

As we have discussed earlier, if  the damping coefficient is cho- 
sen to be the speed of the reflected wave (/5~ = 1 - c in this 
case), no wave can be reflected and the right boundary absorbs 
all the wave energy. This phenomenon is clearly illustrated in 
Fig. 4. Note that if the fixed boundary at x = 0 is replaced by 
a dashpot, then 00 (s) is given by ( 17 ), which is again a constant. 
Hence, the solution in this case is also given by (27).  It should 
be emphasized that the response solution (27) (or the general 
solution (20))  is valid for all time t > 0. 

t=0.1374 

< _ _  : _ >  

_1 I 
0 0.5 

X 

t=0.7143 
1 

U~-- 
~o 

-1  
0 0.5 

X 

t=1,4835 

~o 
_1 | 

Fig. 4 

t=0.3846 
1 

0 0.5 1 
X 

t=1.0989 
1 

-1 ' -> 
O, 0.5 

X 

t=1.8132 

--> ; 0  

0',5 1 -1~ 0.5 
X X 

Transient response of the axially moving string; the left boundary 
is fixed and the right boundary has a dashpot with damping coefficient 
equal to the backward propagation speed. Arrows indicate directions of 
wave propagation. 
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7 Conclusions 
In this paper, the exact response of an axially moving stnng 

is presented based on wave propagation concept. In particular, 
the response solution may be expressed in terms of wave propa- 
gation functions which can be obtained by merely considering 
the wave propagation in the translating string. The response in 
the time domain is given in terms of the convolution of time- 
delayed excitation and boundary coefficient functions. The solu- 
tion method has several important features: (i) it can include 
general boundary conditions; (ii) it does not require a knowl- 
edge of the system eigenfunctions; (iii) it requires much less 
computation time compared to the modal analysis method; (iv) 
it provides a physical interpretation of the response in terms of 
wave propagation. The formulation and numerical simulations 
indicate that complete wave absorption at a boundary occurs 
when the boundary has a dashpot with damping coefficient 
equal to the propagation speed of the reflected wave. The solu- 
tion procedure outlined in this paper gives a new direction 
for evaluating the transient response of hyperbolic systems, in 
particular nondispersive systems. 
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Nondimensional Parameters for 
Geometric Nonlinear Effects in 
Pressurized Cylinders With 
Axial Cracks 
The effects of geometric nonlinearity on the response of axially cracked cylindrical 
shells under internal pressure are investigated in a general way. Using the Donnell- 
Mushtari-Vlasov nonlinear shell equations, the nonlinear response is shown to depend 
on two nondimensional parameters: the geometrical parameter h, which is a function 
of the cylinder geometries and crack length, and the loading parameter r l, which 
depends on the applied pressure, material properties, and cylinder geometries. To 
assess the applicability of such parameters, nonlinear analyses of different cylindrical 
configurations were performed using the STAGS finite element code. The results show 
that the two parameters are able to characterize the nonlinear response of such 
cylinders. Effects of nonlinearity are then presented in the form of an iso-nonlinear 
plot showing the percentage difference between the linear and nonlinear stress inten- 
sification factors. Using the iso-nonlinear plot, the importance of  geometric nonlinear- 
ity can thus be assessed once the cylinder geometries, loading parameters, and 
material properties are known. 

I n t r o d u c t i o n  

The problem of thin cylindrical shells with axial cracks has 
been investigated for the past three decades (Folias, 1965; Cop- 
ley and Sanders, 1967; Erdogan and Kibler, 1969) due to its 
relevance to the damage tolerance design of pressure vessels 
such as an aircraft fuselage. The response of a cracked shell is 
fundamentally different from that of a fiat plate. In a cracked 
shell, the region surrounding the crack bulges (deforms out-of- 
plane) due to a combination of internal pressure and geometric 
coupling between the membrane and bending actions. The phe- 
nomenon is illustrated in Fig. 1 where bulging of the crack 
region in an axially cracked cylindrical shell is shown. This 
geometric coupling is a characteristic of any shell structure 
where bending and stretching deformations are coupled. Bulg- 
ing causes an amplification of the stress intensity factor in a 
shell structure. This stress intensification in a cracked shell is 
therefore defined as the ratio of the stress intensity factor in a 
cracked shell to that of a cracked plate with the same crack 
geometry. 

In general, there are two kinds of stress intensifications in 
thin, cracked plate/shell structures: the membrane stress intensi- 
fication, which is uniform through-the-thickness, and the bend- 
ing stress intensification, which varies linearly through-the- 
thickness. When the classical plate/shell theory is used to solve 
this problem, the angular distributions of the membrane and 
bending stress intensity factors with respect to the crack plane 
are different. This arises from the inability of the classical plate/ 
shell theory to completely satisfy the stress-free boundary con- 
ditions along the crack face. The difference between the two 
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angular distributions suggests that the membrane and bending 
stress intensity factors cannot simply be combined by adding 
them. Some kind of interaction formula (Sanders, 1982) is 
needed to obtain the combined effects. However, it has been 
shown recently (Ansell, 1988) that the contribution of the bend- 
ing stress intensity factor is less than 0.3 percent for thin plates/ 
shells and can therefore be neglected for all practical purposes. 

Folias (Folias, 1965) was the first to solve this crack problem 
and obtained the solutions for the membrane stress intensifica- 
tion. His solutions are based on the linear, shallow-shell equa- 
tions. Folias claimed that the magnitude of the bending stress 
intensification is small and the contribution from the bending 
stress intensification can therefore be neglected. The final solu- 
tion depends only on one geometrical parameter, k: 

=" 12(1 - u z) (1) 

where a is the crack half-length, R is the shell radius, h is the 
shell thickness, and u is the Poisson's ratio. The cylinder geome- 
try is illustrated in Fig. 2. 

Folias' original solution is valid only for small values of 
h(h ~ 1). Others (Copley and Sanders, 1967; Erdogan and 
Kibler, 1969) were able to obtain the solutions which are valid 
for larger values of k (k less than 8). The following simple 
equation was subsequently proposed by Folias (Folias, 1974a) 
to fit the numerical solution for the membrane (extensional) 
stress intensification, K ext, and is valid within _+6 percent for 
values of k less than 8: 

K ext = x/1 + 0.317k 2 (2) 

where h is the geometrical parameter defined by Eq. ( 1 ). 
Failure prediction methodology can then be developed by 

modifying the fiat-plate failure prediction/correlation using Eq. 
(2)  to take into account the stress intensification in the hoop 
direction due to bulging. This methodology has been developed 
for metallic cylinders (Folias, 1974a) as well as quasi-isotropic 
composite cylinders (Graves and Lagace, 1985; Ranniger et al., 
1995). Comparison between the predictions and the experimen- 
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Fig. 1 Illustration of bulging of the crack face in an axially cracked 
cylinder (note: out-of-plane deformations are magnified 20x)  

tal results performed on different cylinders is very good (Folias, 
1974a; Ranniger et al., 1995). Such good agreement between 
the predicted and measured failure pressures was observed de- 
spite major assumptions imposed in deriving the stress intensi- 
fication factors such as the assumptions on linearity, small de- 
formation, and shell-shallowness. 

However, such assumptions can be violated in practice. 
It can be shown from analyses that the maximum bulging 
displacement can be on the order of the cylinder thickness 
(Ansell, 1988; Riks, 1987). This implies that the response 
of an axially cracked cylinder is actually nonlinear to some 
degree. Ansell (Ansell, 1988) was the first to investigate the 
effects of geometric nonlinearity on the stress intensification 
factors in axially cracked cylindrical structures using the AB- 
AQUS finite element package. The configuration studied was 
the fuselage section of a SAAB 340 aircraft. The dependence 
of the stress intensification factors on the applied pressure 
was noted, thus illustrating the effects of geometric nonlin- 
earity. Since then, others (Riks, 1987; Rankin, 1988) per- 
formed similar analyses for different cylindrical geometries 
using different finite element packages and found similar 
results. Recently, Chen and Schijve (1991) developed the 
membrane stress intensification expression based on some 
empirical geometrical parameters measured from experi- 
ments. In all cases, the magnitude of the nonlinear membrane 
stress intensification decreases as the pressure increases. 

Despite such progress, the work performed in the literature 
to date has been case-specific in that the effects of nonlinear- 
ity have been investigated only for specific cylinders. There- 
fore, it is difficult to draw general conclusions on the signifi- 
cance of these effects. The present work addresses the nonlin- 
earity issues in a more general way. Using the simplest 
nonlinear shell equations (the Donnell-Mushtari-Vlasov 
equations), the parameters of interest are extracted. Exten- 
sive finite element analyses are then performed to assess the 
applicability of this parameter. Error introduced by the as- 
sumption that nonlinearity is not important is shown in the 
form of an iso-nonlinear plot showing the percentage differ- 
ence between the linear and the nonlinear stress intensifica- 
tion solutions as functions of the two proposed nondimen- 
sional parameters. 

Approach 
The overall goal of the work is to be able to predict the 

failure of axially cracked cylinders using fiat plate fracture data. 
To accomplish this, the stress intensification factor discussed 
previously is needed to account for different structural responses 
of the two structures. This "structural factor" has been obtained 
for the linear case and has been used to modify a fiat-plate 
fracture criterion to predict shell fracture (Folias, 1974; Graves 
and Lagace, 1985). Note that the geometric nonlinearity effects 

due to bulging have been neglected in the derivation of the 
linear stress intensification factors. 

The nonlinearity effects have been investigated only for spe- 
cific cylinders and no general conclusions can be drawn from 
such analyses. The present work addresses the nonlinear effects 
in a general way. Using the Donnell-Mushtari-Vlasov nonlinear 
shell equations, nondimensional parameters are first derived. 
Finite element analyses of different cylinders are performed to 
verify the applicability of such parameters. The nonlinear stress 
intensity factors are obtained using the nodal release technique. 
An assessment of the nonlinear effects is then made by compar- 
ing the linear and the nonlinear solutions in the form of an iso- 
nonlinear plot. 

Determination of the Governing Nondimensional Pa- 
rameters 

The Donnell-Mushtari-Vlasov (DMV) nonlinear shallow 
shell theory is used to obtain the parameters of interest. The 
DMV theory is strictly valid only for shallow shells but does 
include the effects of large deformation and moderate rotation 
(Yamaki, 1984). Other higher order nonlinear shell theories 
such as the Sanders nonlinear shell theory (Sanders, 1963), 
which is valid for the case of deep shells, can also be used and 
has been shown to yield the same results for the case where 
the crack is oriented in the axial direction (Budiman, 1996). 
The reason is that the size of the crack oriented in the axial 
direction does not influence the shallowness condition. How- 
ever, when the crack is oriented in the circumferential direction, 
the size of the crack does influence the shallowness assumption. 
Therefore, the two theories are not expected to agree for this 
latter case and it is necessary the use the higher order theories 
that are valid for deep shells. Based on this reason, the generality 
of the approach outlined here for an axially cracked cylinder is 
not lost by using this simpler shell theory. Therefore, only the 
derivation using the DMV theory is presented here for the sake 
of simplicity. 

The geometry of the cylindrical shells considered is shown 
in Fig. 2. For a cylindrical shell, the governing equations are 
(Yamaki, 1984) 

l ~4 F 1 w2 
E h  R w ,.~ + ,xy - W x x W  ~, (3) 

Eh 3 

12(1 - u 2) 
~74W 

1 
- - - F , ~ .  + F x.,.wy~, + F , y y W , x  - 2 F x y W . x y  + p (4) 

R 

where F is the stress function, w is the out-of-plane displace- 
ment, p is the internal pressure, x is the axial coordinate, y is 
the hoop coordinate, E is the material modulus, and u is the 

h 

Fig. 2 Geometry of an axially cracked cylindrical shell under internal 
pressure 
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Poisson's ratio. It is convenient to perform nondimensionaliza- 
tion of Eqs. (3) and (4) via 

X p : a x  

y' =ay 

h2h 
W r : W 

[12(1 - u2)] I/2 

F ' =  (12( Eh31S u2))F" (5) 

In the nondimensionalization, a is the crack half-length, h is 
the cylinder thickness, k is the nondimensional crack length 
given by Eq. (1), and E and u are the material parameters. 
Henceforth, the primed quantifies correspond to the physical 
variables and the unprimed quantities are dimensionless. In 
terms of these nondimensional parameters, the governing equa- 
tions can be written as 

V4F k4War 4 2 - .. = X [w~. -  w.xxwyy] (6) 

and 

V4w + F,~x 

= F,a~vW,yy q-  F , y y W x a  - 2 F x y w , x y  + X2•12(1 - u2)r /  (7 )  

where k is given by Eq. ( 1 ) and 

P 
r / -  2 • (8) 

Unlike the linear theory, where only one parameter, k, is needed 
to characterize the cylinder response, the nonlinear formulation 
requires two parameters: the geometrical parameter h and the 
loading parameter r/. 

The r/parameter is a measure of the "driving force" of the 
nonlinearity and can also be written as 

( L ~ ) I  l (9) 

where each of the three components represents part of the physi- 
cal "driving force" for nonlinear behavior. The "driving 
force" is directly proportional to the hoop stress (pR/h) since 
the higher this stress, the greater the out-of-plane deformation 
and thus the more nonlinear the response. The parameter is 
inversely proportional to the material (homogenized laminate) 
stiffness (E) since E is a measure of the material/structural 
resistance to deformation. It is also inversely proportional to 
the shell ratio (h/R) since, for a particular cylinder with a 
known radius, the smaller the magnitude of the shell ratio, 
the smaller the shell wall rigidity and thus more out-of-plane 
deformation occurs resulting in a more nonlinear response. The 
r] parameter obtained via the equations is therefore consistent 
with that obtained by considering the physics of the situation. 

Finite Element Models 

The STAGS finite element code (Brogan et al., 1994) was 
used in the analyses. The shell element used was the 410 shell 
element which has six degrees-of-freedom per node: three dis- 
placements (u, v, w) and three rotations (qS,, ~by, q~z). To simu- 
late the biaxial stress state in the cylinders, internal pressure as 
well as axial forces at the end of the cylinders were applied. 
The length of the cylinder model was chosen so that the edge- 
effects from the end of the cylinders have negligible influence 
on the stress/strain fields in the region of interest. 

There is no closed-form solution for the magnitude of the 
edge-effects in an axially cracked cylinder, so it was therefore 
assumed that a cylinder model with length corresponding with 
25 times the crack size is adequate for this problem. By compar- 
ing the finite element solution with the available results in the 
literature for the linear case, this assumption is assessed and 
the cylinder length can be modified if necessary. 

Other geometrical parameters of interest are the skin thick- 
ness, h, and the cylinder radius, R. The skin thickness of the 
crown of an aircraft fuselage is usually on the order of 1 to 2 
mm (Niu, 1988). Two different thicknesses were thus chosen: 
a baseline thickness of 1.4 mm and the scaled-up thickness of 
5.6 mm where the scaled-up thickness is exactly four times the 
baseline thickness. Although this choice is somewhat arbitrary, 
it can be shown from Eq. ( 1 ) that for this ratio and a constant 
value of R, the ratio of the crack length, 2a, of the scaled-up 
model and that of the baseline model is exactly two. 

The computation of stress intensity factor was accomplished 
using the nodal release technique (Rankin et al., 1994, Viz et 
al., 1995). This method was chosen due to its accuracy, simplic- 
ity, and compatibility with the STAGS code. This method has 
the advantage that no special finite element is needed to get 
accurate results. However, the use of this numerical technique 
in a nonlinear problem requires two separate analyses: one, to 
compute the nodal forces and, two, to compute the crack face 
separation distance as functions of the applied loads. This re- 
quirement may render this method inefficient for larger prob- 
lems. Methods based on the energy-conservafion integral (such 
as the J-integral) (Moran and Shih, 1987) or the crack closure 
integral (Potyondy et al., 1995) can also be used and may even 
be more efficient for larger problems. Nevertheless, the nodal 
release technique is still considered efficient for all the cases 
analyzed in the present work. 

The procedure for the computation of the energy release rate 
is outlined briefly here. The detailed derivation can be found in 
Rankin et al. (1994) and in Viz et al. (1995). As briefly men- 
tioned before, in order to use this technique to compute the 
nonlinear stress intensity factors, two separate finite element 
analyses are needed to compute the nodal forces and separation 
distances as functions of the applied loading. Each crack-tip in 
the finite element models is modeled using two different nodes 
(the master node and the slave node) which have the same 
coordinates and are constrained to move the same amount. In 
the first run, the general nodal forces (Fx, Fy, Fz, Mx, My, and 
M~) at each crack-tip needed to ensure compatibility of the two 
crack-tip nodes are computed. In the second run, the crack-tip 
is moved a crack increment value A which is chosen a priori, 
thus allowing the two original crack-tip nodes to have indepen- 
dent degrees-of-freedom. The separation distances between the 
two nodes are then obtained. The nodal release technique is 
then used to compute the evolution of the energy release rate 
using the calculated nodal forces and separation distances. By 
knowing the energy release rate, the stress intensity factor can 
be computed using the Irwin formula (Rice, 1972). 

As indicated, the crack increment, A, needs to be chosen a 
priori. In this work, A was chosen to be five percent of the half 
crack-length (0.05a) based on the results of a preliminary study 
on a large center-cracked panel loaded perpendicular to the 
crack plane. The numerical results obtained for such panels 
using the finite element method and the nodal release technique 
described here as well as the analytical solutions are shown in 
Table 1. The error is about 0.8 percent when the crack incre- 
ment, A, is set to 0.05a. Such error is considered acceptable 
and the A value of 0.05a was thus chosen. 

In the nonlinear analysis, the nodal forces and the nodal 
separation distances are available only at discrete load steps 
which are not evenly spaced. To get a continuous solution, some 
kind of curve-fitting or interpolation is needed. The cubic-spline 
method (Press et al., 1989) was used to interpolate the discrete 
nodal forces and separation distances. The nodal release tech- 
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Table 1 Comparison between the numerical and analytical 
solutions for the mode I stress intensity factors of a large 
center-cracked panel (tT = 100 MPa, 2a = 20 ram) 

Calculated Stress Intensity Factor (MPa~m) 

A/a Nodal -Release Analytical Error 

0.025 17.80 17.73 0.4 percent 
0.050 17.87 17.73 0.8 percent 
0.100 17.97 17.73 1.4 percent 

nique can then be used to obtain the evolution of the energy 
release rate and then the stress intensity factor once the continu- 
ous dependence of the nodal forces and that of the separation 
distances on the applied pressure are known. By taking the ratio 
of the stress intensity of the cracked shell to that of the cracked 
plate of the same crack length at each load step, the nonlinear 
stress intensifications were then obtained. 

Results of Numerical Analyses 
Three different stages of numerical analyses were performed. 

The initial stage was used to assess the accuracy and conver- 
gence of the finite element mesh used by comparing the linear 
membrane stress intensification factors obtained using STAGS 
with the numerical solutions available in the literature. It was 
also intended at this initial stage to investigate the influence of 
the edge effects from the cylinder ends and the validity of the 
chosen crack increment, A, before any nonlinear analyses were 
performed. The second stage was performed to assess the appli- 
cability of the proposed parameter, r], to characterize the nonlin- 
ear response of different cylinders. The third and final stage 
was intended to determine the severity of nonlinearity by com- 
paring the linear and nonlinear membrane stress intensifications 
for cylinders analyzed. By knowing the differences between the 
linear and nonlinear solutions, an iso-nonlinear plot showing 
the percentage difference between the two solutions was then 
created. 

In the first stage of the analyses, 12 cylinders with radius of 
1.52 m, skin thickness of 1.4 ram, and X values ranging from 
1 to 12, con-esponding to crack lengths of 51 mm to 612 ram, 
were analyzed. Only one-half of each cylinder had to be mod- 
eled due to symmetries in the applied loading and in the geome- 
tries with respect to the plane passing through and perpendicular 
to the middle of the crack. The finite element mesh of one such 
cylinder is shown in Fig. 3. 

The stress intensification factors were computed using the 
nodal release technique and compared with the available numer- 

0.5 m 

crack 
P 

Fig. 3 Typical finite element mesh (case shown is cylinder with R - 
1.52 m, h = "1.4 mm, 2a = 0.62 m resulting in ~ = 12) 

ical solution obtained by Erdogan and Kibler (1969) which is 
based on the solution of coupled integral equations. Note that 
the Erdogan and Kibler numerical solutions are only available 
for values of k less than 8. The comparison between the two 
solutions is shown in Fig. 4. The agreement is excellent. This 
indicates that the assumptions on the cylinder length discussed 
previously and the crack increment used are justified and the 
convergence of the finite element meshes is satisfactory. 

After sufficient confidence with the finite element approach 
had been attained, the second stage of the analyses was started 
where different cylindrical configurations with X equal to 3, 6, 
9, and 12 were analyzed. The smaller values of k (3 and 6) 
correspond to the range of k investigated experimentally in the 
literature for isotropic and quasi-isotropic composite cylinders 
(Folias, 1978; Ranniger, Lagace and Graves, 1995), while the 
larger values of X (9 and 12) correspond to the situation in a 
narrow-body fuselage structure. In an actual fuselage, an axial 
crack as large as 500 mm (--20 inches) may have to be consid- 
ered since such size is usually dictated by the spacing between 
two adjacent crack arrest members. 

The nonlinear analyses to obtain the nonlinear membrane 
stress intensification factors were performed for different values 
of crack size and skin thickness of the cylinder by keeping 
the cylinder radius constant. For each value of the geometrical 
parameter X, nonlinear analyses were performed for different 
values of crack size and skin thickness while holding the cylin- 
der radius constant at 1.52 m and 0.76 m. The largest cylinder 
(R = 1.52 m) corresponds to the geometries of a narrow-body 
fuselage. The other cylinder has a radius which is one-half this 
value. 

The nonlinear membrane stress intensifications of different 
cylinders for the case of k equal to 3 are shown in Fig. 5. In 
that figure, the membrane stress intensifications, K TM, are shown 
to be strong functions of pressure and specific cylinder geome- 
tries. The linear membrane stress intensification factor, on the 
other hand, depends solely on X and is therefore independent 
of the applied pressure. For all the cases shown in Fig. 5, the 
linear solution corresponds to the nonlinear results when the 
pressure, p, is equal to zero. In all of the cases studied, the 
magnitude of the membrane stress intensification decreases as 
the applied pressure increases. Geometric nonlinearity effects 
become more important as the pressure increases due to an 
increase in the driving force causing stiffening in the structural 
response. Further crack opening is constrained causing a de- 
crease in the magnitude of the energy release rate and the stress 
intensity factor. This trend is consistent with the results from 
previous work (Ansell, 1988; Riks, 1987) where a similar trend 
was observed for the specific cylinders analyzed. 

When the K ~xt are presented as functions of r l, the responses 
of different cylinders collapse nicely to a single curve as illus- 
trated in Fig. 6. For small values of r 1 (r 1 < 0.1 for k = 3), 

• STAGS solution 
6 • 

Erdogan Solution • 
e 

Kext 42 y 

0 , , ,  i , , ,  i , , ,  i , , ,  i , , ,  i i , , 

0 2 4 6 8 10 12 

X 

Fig. 4 Plot of the linear membrane stress intensification versus the geo- 
metrical parameter X as computed using the STAGS code and the nodal 
release technique and using the Erdogan and Kibler numerical solution. 
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Kex t  

- - R = 1 . 5 2  m, t=1.4 ram, 2a=0.15 m 

1 - - -R=1.52 m, t=5.6 ram, 2a=0.30 m 

. . . . .  R=0.76 m, t=1.4 ram, 2a=0.11 m 

......... R=0.76 m, t=5.6 mm, 2a=0.22 m 
0 

0.0 0.2 0.4 0.6 0.8 .0 

Pressure (MPa) 
F i g .  5 Dependence of the membrane stress intensification factor (K ext) 
on the internal pressure for different cylindrical configurations 

K TM is relatively constant and, therefl)re, the effects of nonlinear- 
ity are not important in that region. As the pressure is increased 
further (larger values of r/), K TM starts to deviate from the 
linear solution indicating that the nonlinear effects become more 
important. The same behavior is also observed for cylinders of 
different values of k and is illustrated in Fig. 7. 

The results of the analyses thus confirm the applicability of 
the nondimensional parameter r/, obtained previously from the 
governing equations, in characterizing the nonlinear response 
of axially cracked cylinders. In general, the nonlinear response 
depends on the crack length (contained in X) as well as on the 
applied loading (contained in r/). For any cylinders, the longer 
the crack length (the higher the X value) and the higher the 
applied loading (the higher the ~7 value), the more nonlinear 
the response is. 

In the third stage of the analysis, models of cylinders with 
different crack lengths were analyzed to assess the implications 
of the nonlinearity effects. The nonlinear analyses were per- 
formed on the same cylinder models analyzed in the first stage 
of the analyses (k values ranging from 1 to 12). As previously 
mentioned, the purpose of these analyses is to create an iso- 
nonlinear plot where the severity of the nonlinearity can be 
readily determined from the cylinder geometries, material prop- 
erties, crack length, and operating pressure. 

The metric used to characterize the severity of nonlinearity 
is the percentage error between the magnitudes of the linear and 
nonlinear K ~×~. For each value of X, the error can be computed as 

K ext _ K TM 
linear nonlinear 

E r r o r  = x 100. ( 1 O) KCXt 
lincm 

The iso-nonlinear plot is depicted in Fig. 8 for k values ranging 
from 1 to 12 where errors ranging from 5 to 40 percent are 
shown. 
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X=3 
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Kex t  
- - R = 1 . 5 2  m, t=1.4 mm, 2a=0.15 m 

1 . . . .  R=1.52 m, t=5.6 ram, 2a=0.30 m 

. . . .  R=0.76 m, t=1.4 mm, 2a=0.11 m 

......... R=0.76 m, t=5.6 mm, 2a=0.22 m 
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F i g .  6 Dependence of the membrane stress intensification factor ( K  ~x t )  

on the loading parameter '~ 
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Fig. 7 Dependence of the membrane stress intensification factor (K "*t) 
on the loading parameter .q for different values of the geometrical param- 
eter X 

Values of h less than 1 were not considered in creating the 
iso-nonlinear plot of Fig. 8. For a value of h of 1, the magnitude 
of the linear K ~xt is relatively small (K TM = 1.17 from the 
numerical solution). Since K ext is defined as the ratio between 
the stress intensity of a cracked shell to that of a cracked plate, 
its value cannot be less than 1. Therefore, the maximum percent- 
age error for that case is only around 14 percent, irrespective 
of the value of the loading parameter r/. Thus geometric nonlin- 
earity effects are relatively insignificant for small crack lengths 
COlTesponding to values of k less than 1. 

Figure 8 can be readily used as a design chart to assess 
the degree of nonlinearity in any axially cracked cylinders. By 
knowing the geometries of the specific cylinders, the material 
properties, and the operating pressure, one can readily compute 
the magnitude of the two nondimensional parameters X and 
and use the iso-nonlinear plot to determine the importance of 
nonlinearity. 

Implications 
The stress intensification factor is a function of both the 

geometrical parameter X and the loading parameter q as shown 
in Fig. 7. It is therefore important to consider both of these 
parameters in assessing the degree of nonlinearity for a particu- 
lar case. The information provided by the iso-nonlinear plot 
shown in Fig. 8 is useful in this regard as it allows an assessment 
of the effects of geometric nonlinearity on any axially cracked 
cylindrical shells based on two nondimensional parameters 
and q. For example, for cylinders with constant crack length 
(constant value of k), as pressure increases (q increases), the 
deviation from the linear solution increases, indicating more 
nonlinear response. Similarly, for a fixed pressure (constant 
value of r/), as the crack grows (k increases), the deviation 

2.0 
I ' , . ,  '~ - - 5 %  

1.5 / I l l  ~. '~ ", '~. - - - 1 5 %  
• ' ~ \ ',, ~, '~, ' .  - . . . .  20% 
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Geome t r i ca l  P a r a m e t e r  X 

F i g .  8 I s o - n o n l i n e a r  p l o t  showing the percentage difference between 
the linear and nonlinear membrane stress intensifications as functions 
of the two nondimensional parameters 
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from the linear solution also increases. These observations show 
the importance of nonlinearity effects in the cylinder response. 

Such information is particularly important to assess any 
"scale effects" in using experimental results obtained from 
laboratory-scale specimens to predict/assess the response/fail- 
ure of a full-scale structure. For example, consider the case of 
two cylindrical shells of the same thickness, nondimensional 
crack length h., and material but of different radii. Both cylinders 
are made of Aluminum 2024-T3 with a modulus (E) of 70 GPa 
and apparent toughness (K,) of 100 MPa t~n. The first cylinder 
is similar to the fuselage of a Boeing 737 airplane (R = 2.0 m, 
h = 1.0 mm) with a ratio of the radius to crown skin thickness 
on the order of 1000. The second cylinder is typical of a labora- 
tory-scale test specimen with a radius-to,thickness ratio on the 
order of 100 (R = 150 ram, h = 1.0 ram). The maximum crack 
size considered in the larger cylinder is dictated by the spacing 
of two adjacent crack arrest members which is typically around 
500 mm (Niu, 1988). In this example, it is assumed that a 
through-thickness axial crack of 250 mm long, corresponding 
to one-half the tear-strap spacing, is present in the fuselage. 
This yields a value of ~ of 5. Axial cracks of different length 
can also be considered. For the smaller cylinder, the crack size 
for the same value of X is approximately 68 mm. To compute 
the magnitude of the r/-parameter using Eq. (9), the magnitude 
of the failure pressure p is needed. For metallic cylinders, the 
failure pressure p can be obtained from the linear-elastic fracture 
criterion. Therefore, Eq. (9) can be rewritten as 

where K,  is the apparent material toughness in plane stress. 
Note that to compute the magnitude of the r/-parameter using 

Eq. (11), the magnitude of K °~' is also needed. Since the actual 
K ext is nonlinear and is a function of both X and r/, the K °×' values 
obtained from the linear solution (which is only a function of 
X) can be used as a first approximation. It has been shown in 
the previous section that the magnitude of the nonlinear K "xt is 
smaller than that obtained from the linear solution. By making 
this assumption, a conservative estimate of the r/-parameter and 
the error for each cylinder can be made. 

The computed r/-parameters for the real fuselage and the 
laboratory-scale test specimens are equal to 1.53 and 0.22 corre- 
sponding to failure pressures of 45 kPa and 756 kPa, respec- 
tively. The error can be readily estimated using the iso-nonlinear 
plot (Fig. 8). For the real fuselage, the error is at least 35 
percent. The error is around ten percent for the laboratory-scale 
test specimen. Therefore, it is clear that the nonlinear effects 
are more important in the larger cylinder. 

Note that the failure pressure of the larger cylinder is lower 
than the ultimate design pressure for a Boeing 737 (around I l0 
kPa). The reason is that in determining the failure pressures in 
this sample problem, the upper bound value of the hoop stress 
[cr~,,,op = ( p R / t ) ]  was used. In an actual fuselage, stiffening 
elements such as stringers and frames carry part of the loads, 
hence reducing the hoop stress in the skin. The reduction can 
be as high as 25 percent depending on a particular fuselage 
construction (Flugge, 1952). Furthermore, the magnitude of the 
plane stress toughness of Aluminum 2024-T3 used in this sam- 
ple problem (K, = 100 MPa~/7~) might be too low. Plane stress 
toughness for Aluminum 2024-T3 as high as 175 MPa~m has 
been noted by other author (Swift, 1987). 

Despite those differences, this example illustrates the "dan- 
ger" of using laboratory test results obtained from small speci- 
mens to predict the response of a full-scale structure. Neglecting 
the nonlinear effects in failure prediction of a large structure 
(such as an aircraft fuselage) can produce results which are too 
conservative due to different degrees of nonlinearity that operate 
at different scales. 

Summary 
Using the Donnell-Mushtari-Vlasov nonlinear shell equations 

and the finite element method, it has been shown that two nondi- 
mensional parameters can be used to characterize the nonlinear 
response of any axially cracked cylinders. The two parameters 
are the geometrical parameter X,, which depends on the specific 
cylinder geometries, and the loading parameter r/, which de- 
pends on the applied pressure, the shell ratio h / R ,  and the 
material stiffness. 

An iso-nonlinear plot showing the percentage difference be- 
tween the membrane stress intensification factors obtained using 
the linear and nonlinear solutions as functions of ~ and r/has 
been presented. Such a plot is very useful in assessing the degree 
of nonlinearity in an axially cracked cylinder. By knowing the 
shell geometries, material properties, and loading conditions, 
one can readily compute the degree of nonlinearity with the 
help of the plot. 

Using the iso-nonlinear plot, which shows the percentage 
difference between the linear and nonlinear stress intensification 
factors, one can also show the "danger" of directly translating 
experimental results obtained from "scaled" test specimens to 
predict the response of a full-scale structure due to different 
degrees of nonlinearity. The nonlinear effects are shown to 
be more significant in the full-scale structures than in the test 
specimens. The error introduced in the computation of the stress 
intensification factors is therefore larger in an actual fuselage 
and were shown in one particular example to be at least 35 
percent. 
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Free-Edge Stress Singularity in 
a Two-Dimensional 
Unidirectional Viscoelastic 
Laminate Model 
This paper concerns the stress singularity at the interface corner between the perJectly 
bonded fiber and the matrix of  a unidirectional two-dimensional laminate model 
subjected to a unifbrm transverse tensile strain. The matrix is assumed to be a linear 
viscoelastic material. The standard Laplace transform and the Mellin transform 
techniques are employed to get the characteristic equation and the order of  singularity 
is obtained numerically for  a given viscoelastic model. The time-domain boundary 
element method is used to investigate the behavior o/stresses for the whole interlace. 
It is shown that the order of  singularity increases with time while the free-edge stress 
intensity factor is relaxed with time. 

1 Introduction 

The problem of a composite body consisting of two isotropic 
and elastic materials has received much attention (Bogy, 1968; 
Reedy, 1990; Tsai and Morton, 1991). It is well known that a 
stress singularity exists at the interface corner between bonded 
elastic quarter planes and such high stress intensification may 
lead to plastic deformation or interracial edge cracks. 

The fiber-matrix interface of a unidirectional laminate would 
suffer from a stress system in the vicinity of the free surface 
under a transverse tensile loading. In such a region two inter- 
acting free surface effects occur, and very large interface 
stresses can be produced. A stress singularity which exists at 
the interface corner between the fiber and the matrix might lead 
to fiber-matrix debonding. In this study, the stress singularity 
at the interface corner between the perfectly bonded fiber and 
the matrix of a unidirectional laminate model subjected to a 
uniform transverse tensile strain is investigated. At room tem- 
perature the matrix material remains in its initial elastic state 
through the entire loading period and hence it is not necessary 
to consider the time-dependent behavior of the stress-strain rela- 
tions in performing the stress analysis of the composite material. 
In certain application, however, the temperature and time depen- 
dence of the loading may be such that the rheological behavior 
of the matrix may no longer be negligible. Hence, provision is 
made for a matrix assumed to be a linear viscoelastic material. 

The viscoelastic interface problems have been studied by 
several investigators. Two studies (Weitsman, 1979; Delale and 
Erdogan, 1981) considered a pair of interfaces in which one 
material is elastic and the other is viscoelastic. The results ex- 
hibited a redistribution of the very large stresses near the edge 
of the interface, but no singularities were encountered because 
of the simplifying assumptions with regard to the modeling of 
joining structural members. Blanchard and Ghoniem (1988) 
used the Mellin transform technique and the elastic-viscoelastic 
correspondence principle to determine the relaxation of thermal 
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stress singularities in bonded viscoelastic quarter planes. As 
they indicated, however, numerical inversion of the Laplace 
transform is difficult because the operator's inherent unbound- 
edness prevents explicit error control. It can be mentioned that 
such disadvantage limits the application of their approach. 

In this study, the transformed characteristic equation for per- 
fectly bonded elastic and viscoelastic materials is first derived, 
following Bogy, with the use of the Laplace transform with 
respect to time t and the Melfin transform with respect to r. 
This equation is inverted analytically for a given viscoelastic 
model into the time-dependent viscoelastic equation which is 
readily solved using standard numerical procedure. The time- 
domain boundary element method (BEM) is then employed to 
investigate the behavior of stresses at the interface of a unidirec- 
tional laminate model subjected to a uniform transverse tensile 
strain. 

2 Stress Singularity at Interface Corner 
The region near the interface corner between perfectly 

bonded elastic and viscoelastic quarter planes is shown in Fig. 
1. In the following, a condition of plane strain is considered. 
The material properties in the upper viscoelastic quarter plane 
are referred to with a subscript " I "  while those of the lower 
elastic plane are denoted by a subscript " H . "  

A solution of 

V4(f(r, 0; t) = 0 (1) 

is to be found such that the normal stress, a0, and shear stress, 
~-,.0, vanish along 0 = ±(7r/2), further that the displacements 
and stresses are continuous across the commnon interface line 0 
= 0. The solution of this problem is facilitated by the Laplace 
transform, defined as 

d)*(r, 0; p) = f l  ~ (I)(r, 0; t)e l"dt (2) 

where e)* denotes the Laplace transform of ~ and p is the 
transform parameter. Then Eq. (1) can be rewritten using Eq. 
(2) as follows: 

V4~*(r, 0; p) = 0. (3) 

By definition, the stresses in the Laplace transformed space are 
found from the stress function ~I)* in the following manner: 
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/ / /  
surface I /  / / / / 

Fig. 1 Region near the interface corner between perfectly bonded elas- 
tic and viscoelastic quarter planes 

a ~ =  1 ( i , , .  + 1 

l 1 

and the displacements can be shown to be given by 

2p#*(p--------) ([>'# + r-~ (I~,oo - pu*(p)V2~I ~* 

(4) 

U o , r  - -  - -  + - -  - -  - -  

r r p#*(p)  r 

where or* and u* are the Laplace transformed stresses and 
displacements, respectively, and/2,* and u* are Laplace trans- 
forms of the shear relaxation modulus #(t)  and the viscoelastic 
Poisson's ratio u(t).  

Combining these equations with the traction-fi'ee boundary 
condition (at 0 = _+(3r/2)) 

¢?0 = ,-*o = 0 (6) 

and the interface conditions at 0 = 0 

(~,Yo); = (~;~;,),, 

(T;.~,), = (T;~),; 

(u*);  = ( u * ) .  

(u;Y); = (u;;")., (7) 

one can solve the problem. 
The boundary value problem represented by (3) to (7) is 

conveniently solved with the aid of the Mellin transform, de- 
fined as 

v~*(s,O;p)=f;c~*(r,O;p)r' 'dr 

~;~(s, O; p) = f o  ¢~'(r, O; p ) f+l  dr 

o; , )  = 0; (8) 

Typical solutions for the model shown in Fig. l are chosen of 
the form 

• ;~(s, 0 ;p )  = a t (s ,  p) sin (sO) + b;(s, p) cos (sO) 

+ c;(s, p) sin [(s + 2)0] 

+ dz(s, p) cos [(s + 2)0] 

C~ ~j(s. 0; p)  = a . ( s ,  p)  sin (sO) + b.(s ,  p) cos (sO) 

+ c . ( s ,  p)  sin [ (s+ 2)0] 

+ du(s, p)  cos [(s + 2)0] (9) 

where subscripts " I "  and " H "  denote the upper viscoelastic 
zone and the lower elastic zone, respectively. 

The relations between stresses, displacements, and stress 
functions are given as follows: 
for the upper viscoelastic zone 

(~ffo)z = s(s  + 1)U~ 

d 

dO 

(if#); - 
1 

2pp,*(s + 1) 

( a ~ ) ,  = 1 

2p#~(s  + 1)(s + 2) 

× [ ( s + P ' / ~ s 2 - 2 ( s +  1 ) 2 ) c ~ 0 ~  

d3] 
- ( l - p v ~ ) ~ - 3 ~ T  ; ( lO)  

Jbr the lower elastic zone 

( u ; r ) .  - 

- -  4: 
(~oo). = s(s + 1)~;~ 

(v*0). = (s + 1) ~0 ~ ;  

1 

2#;;(s + l )  

X s(1 + u . s ) ~ ;  - (1 - u.)  dO 2 

( f ly) .  = 
1 

2# . ( s  + l ) ( s  + 2) 

I dod x (s + u . s  2 - 2 ( s  + l)2)-:~. .  , ~ ;  

d3 ] 
- ( l  - ,~,,)~--~3,~, . ( l l )  

Substituting Eq. (9) into (10) and ( l  l)  and combining these 
equations with the transformed boundary conditions (at 0 = 
-+Or/2)) 
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(~*o), = (~*o), = (~*o)1, = (~*o)ii = 0 (12) 

and the transformed interface conditions (at 0 = 0) 

(~0)1 = ( ~ o ) . ,  (~0)1 = (r~0). 

(ff~')l = (ff~). ,  (ff~)l = (ffff)ll (13) 

one can get the following homogeneous system of eight equa- 
tions: 

+ sin 

+ COS 

+ COS C/ 

- -  COS dl1 = 0 

c°s ( ~ ) a I 1 -  sin ( ~ ) b , I -  (1 + ~ ) c ° s  ( ~ )  c'H 

+ 1 + 2 sin dl~= 0 

sbl 1 - - +  
P#f  P#~ 

sa/ 

b l +  d z -  b H -  d l l =  0 

sal + (s + 2 ) c l -  sai l -  (s + 2)c11= 0 

[s + 4(1 - pu~)]d, 

sbll 1 

#II ~H 
[s + 4(1 - ul/)ldll = 0 

1 

P # f  
[s + 2 - 4(1 - puf )]c l  

sail 1 
+ - - - - - [ s  + 2 - 4 ( 1  - ul~)]cll= O. (14) 

I..1'11 #II 

A nontrivial solution to the equation exists only if  the deter- 
minant of the coefficient matrix vanishes. This occurs when s 
satisfies the following characteristic equation: 

- m ~ ( p ) ( s  + 1) 2 = 0 (15) 

where 

1 

m2(p) = 4 ( 1  - u , , ) -  4 (1 - p r , ~ )  
# ,  p #* 

m 3 ( p ) = 4 ( l  _u i1)+ 4 ( l _ p u ] ~ )  ' (16) 
#ll p #* 

Equation (15) has a form identical with that of two bonded, 
elastic quarter planes if p # f  and pun are associated with the 
elastic constants #i and ul. The calculation of roots of Eq. (15) 
actually can be reduced to two transformed material parameters 
ce*(p) and/3*(p)  which are associated with Dundurs' parame- 
ters olz), /3o (1969). In plane strain, pc~*(p) and p/3*(p) are 
defined as follows: 

pee*(p) = p#]~( l - uH) - #,,(1 - p u f )  

pp?~(l - ~,,) + # , ( l  - p u ' ~ )  

pf l , (p)  = p # ~ ( l  - 2uH) - #11(1 - 2pu*)  (17) 

2 [ p # f ( l  - u,,) + # , (1  - p u n ) ]  

For the problem of two dissimilar bonded elastic quarter planes, 
it can be easily verified that transformed material parameters 
ce*(p) and 13*(p) are inverted into Dundurs' parameters teD, 
/3D. 

The time-dependent behavior of the problem is recovered by 
inverting Eq. (15) into the real time space. In order to examine 
the viscoelastic behavior at the interface corner of two bonded, 
elastic, and viscoelastic quarter planes, the viscoelastic model 
characterized by a standard solid shear relaxation modulus and 
a constant Poisson's ratio is taken as follows: 

#l( t )  = go + g~ e x p ( - X t )  

r,l(t) = uo (18) 

where subscript " 1 "  represents the viscoelastic zone, #( t )  is 
shear relaxation modulus, and u is Poisson's ratio. 

Introducing Eq. (18) into (16) and rearranging the resulting 
equation, we have 

[ A * ( p ) + B * ( p ) +  C*(p)]  cos4 ( f ~ )  

+ 

where 

- C*(p)(s + 1) 2 = 0 (19) 

A * ( p ) = 4  [P#}~------~2- 2 #--~ + _1] 
L ~, ~,, p_l 

B*(p) = - 1 6 F  p#~2  (1 - u,,) - #--~-~ (1 - p u f )  
L .,~, •,, 
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C*(p)  = 16 [- /p#y-~ ( 1 ~.,ll) 2 - 2/u'j~-~ ( 1 - p u j ~ ) ( 1  - Pu)  
#~i #H L 

+ ( ~ - - 2 u f + P U ~ 2 ) l  

16 [P 'U~"2 (1 - u11) 2 + 2 p'~: (1 - p u ~ ) ( l  - Uu) 
D*(p)  = L #~1 #1, 

+ - 2u;~ + pu~ ~'2) 

p,~= = g~..__2 + g___L__ 
p p +  k 

//20 
u~ I; = - -  ( 2 0 )  

P 

Equa t ion  ( 1 9 )  can be  inver ted  analy t ica l ly  as fol lows:  

c ( t )  = 16 
(1 - ,,,,)2 go + (2g0g ,  + g2 _ hg~t )e  ~' 

- 2#1(0# i /  (1  - U o ) ( l  - u11) + ( I  - u o )  2 ]  

D ( t )  = 1 6 [ ( I  - Uu) 2 g2 + (2gog,  + g~ - XgZt)e x, 

+ 2#l(t)#11 (1 - Uo)(1 - u1/) + ( I  - uo)21 . ( 2 2 )  

It can be easi ly verif ied that  Eq. (21 ) for  t = 0 and t --, co is 
identical  wi th  that  repor ted  by  Bogy  ( 1 9 6 8 ) .  

Equa t ion  ( 1 7 )  is inver ted  ana ly t ica l ly  as fol lows:  

c~(t) = rh[712 + ~73 e x p ( - ~ o t ) ]  (23) 

/ 3 ( 0  = 714[r15 + r16 e x p ( - ~ p t ) l  ( 2 4 )  

where  

7]2 

711 = 
g ( 0 ) ( l  - uu)  - pH(I  - lJo) 

[ g ( 0 ) ( 1  - ul,) + #1,(1 - uo)] 

[ g ( 0 ) ( l  - ull) + ,uH(1 - u o ) l [ g o ( l  u1/) - #u (1  - uo)] 

[ g ( 0 ) ( l  -- uu)  - #u(1  - v o ) ] [ g o ( l  - va) + #,/(1 - uo)l  

713 = 1 - [ g ( 0 ) (  1 u/1) + # u ( l  - 14,)][go(1 - un)  - /~.11(1 - uo)] 

7]5 

I g ( 0 ) ( I  - u1i) - #1/(I - u o ) ] [ g o ( l  - ull) + p , , ( l  - uo)] 

7]4  = 
g(0)(l - 2 b % 1  ) - # u ( l  - 2uo) 

2 [ g ( 0 ) ( l  - u11) + #, ,(1 - Uo)] 

[ g ( 0 ) (  1 - u , l )  + # , , (  1 - uo)] I g o (  1 - 2u11) - #11( 1 - 2 u o ) ]  

r h, = I - 

[ g ( 0 ) ( 1  - 2u11) - #11(1 - 2 u o ) ] [ g o ( l  - u/1) + #,1(1 uo)]  

[ g ( 0 ) ( 1  - ull) + #1l(1 - Uo) ] [go ( l  - 2uu)  - #,1 (1 - 2uo)]  

[ g ( 0 ) ( l  2u1i) - #1,(1 - 21-'o)][go(1 - uH) + #H(I - Uo)] 

[ A ( t ) + B ( t ) +  C ( t ) ] c o s 4 ( 2  ) 

- [ 2 A ( t ) + B ( t ) ] ( s +  l ) 2 c o s 2 ( ~ )  

- C ( t ) ( s  + I )  2 = 0 

where  

( 2 1 )  

A(t) = 4 [ gg + (2g°g' + g~ - kg~t)e - 2  # l ( 0  ] # , ,  + 1 

B(t)  = - 1 6 [ ( 1  - g2o + (2gog,  + g~ - Xg~t)e x, 
lJ l l  ) 

- ( # 1 ( 0 - 1 )  ( l k / ~ , u  , - u ° ) - # l ( t ) # l l  ( 1 - U / I ) ]  

gl l( l  - u/I) + //./1(1 - Uo) 
~p = X. ( 2 5 )  

[ g ( 0 ) ( l  - u~) + # , ( 1  - u~)] 

As  s h o w n  by Dundur s  ( 1 9 6 9 ) ,  three  types of  b e h a v i o r  can 
occur,  g iv ing  the fo l lowing  charac ter i s t ics  in the  vic ini ty  of  the 
free surface  of  the interface:  

( a )  for  mater ia l  c o m b i n a t i o n s  where  Ion(t)[ < 21/3(01 no 
stress s ingular i ty  arises,  

( b )  for mater ia l  c o m b i n a t i o n s  where  c~(t) = 2[3(t)  ¢ 0 a weak  
s ingular i ty  of  the fo rm In ( r )  occurs ,  and 

( c )  liar cases  where  Ic~(t)l > 21¢~(t)1 a s ingular i ty  of  the  
form r x occurs,  whe re  X is a pos i t ive  constant .  

In this paper ,  only  the case  wh ich  leads to a s ingular i ty  of  
the fo rm r x will  be  cons idered .  

Roots  of  Eq. ( 2 1 )  wi th  - 2  < Re ( s )  < - 1 are of  in teres t  s ince  
they produce  so ln t ions  wi th  u n b o u n d e d  s t resses  and  van i sh ing  
d i sp lacemen t s  as r ~ 0 ( B o g y ,  1968) .  The  ca lcu la t ion  of  the 
zeros of  Eq. ( 2 1 )  mus t  be car r ied  out  numer ica l ly  for  g iven  
values  of  the mater ia l  propert ies .  For  0 < ul, ull < 0.5, there  
is at mos t  one  root  sj wi th  - 2  < R e ( s )  < - l ,  and  that  root  is 
real. A more  deta i led  d i scuss ion  o f  the  root  of  Eq. ( 2 1 )  is 
p resen ted  in B o g y  ( 1 9 6 8 ) .  
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Fig. 2 Idealized unidirectional laminate model 

3 B o u n d a r y  E lement  Evaluat ion  of  Intensity of  
Stress Singularity for Unidirect ional  Laminate  Mode l  

Figure 2(a)  shows a unidirectional laminate subjected to a 
transverse tensile strain Coil(t), idealized as an infinite layered 
solid, and Figure 2(b) represents the two-dimensional plane- 
strain model for analysis of the microstresses at the interface 
corner between the fiber and matrix. Here H(t) represents a 
Heaviside unit step function. It is assumed that the fibers are 
linearly elastic while the matrix is linearly viscoelastic. Typical 
values of fiber volume fraction range from 0.5-0.6 for fiber- 
reinforced laminated systems that are currently in use. In this 
study, fiber volmne fraction is taken as 0.5. The fiber and matrix 
are considered to be perfectly bonded, with no defects or cracks. 

Assuming that no body forces exist, the boundary integral 
equations for the analysis model under a transverse tensile strain 
can be written as follows: 

for the matrix zone 

c~ ' (y)uf(y,  t) 

+ £,,, [.;,,(y,. t)T,j(y, y,; 0+) 

+ uf ' (y ' ,  t - t ' )  OTo(y, y ' ;  t ' )  dt' dS"(y ' )  
+ Ot' 

= t m t m t ,, j (y , t)U~j(y, y ; 0+)  

+ t '"(y'  t - t ' )  OUr'(y, y ' ;  t ' )  dt' dSm(y'); (26) 
J + Ot' 

for the fiber zone 

c~(y )u f (y ,  t) + fs: uf  (y ' ,  t)Vi~(y, y ')dSS(y ')  

= fs ~ t / ( y ' ,  t)V~(y, y')dSY(y ')  (27) 

where superscripts " m "  and " f "  represent the matrix and 
fiber zone, respectively, ul and ts denote displacement and trac- 
tion, and S is the boundary of the given domain. The arguments 
(y, t) imply that the variables are dependent upon both the 
position y and the time t. c0(y) is dependent only upon the 
local geometry of the boundary. For y on a smooth surface, the 
free-term c0(y) is simply a diagonal matrix 0.5 6~. Ui~ and 
T{ represent the elastic fundamental solutions. The viscoelastic 
fundamental solutions UIS' and Tff can be obtained by applying 
the elastic-viscoelastic correspondence principle to the elastic 
fundamental solutions. 

Closed-form integrations of Eqs. (26) and (27) are not, in 
general, possible and therefore numerical quadrature must be 
used. Approximations are required in both time and space. In 
this study, Eqs. (26) and (27) are solved in a step-by-step 
fashion in time by using the modified Simpson's rule for the 
time integrals and employing the standard BEM for the surface 
integrals (Lee and Westmann, 1995). The resulting systems of 
equations are obtained in the matrix form as follows: 
for the matrix zone 

.for the tibet" zone 

(29) 

In Eqs. (28) and (29), superscripts "1"  and "2"  represent the 
viscoelastic matrix zone and elastic fiber zone, respectively, 
while "12" and "21" represent the common interface. H and 
G are influence matrices and R is the hereditary effect due to 
the viscoelastic history. 

The equilibrium and continuity conditions at the common 
interface give 

U 21 ~ U 12 

t 12 = --t 2t . (30) 

Incorporating Eq. (30) into Eqs. (28) and (29) results in the 
follow matrix equation: 

I"l [ H ~ H 2 0 G 12 ] u 12 

o H2' H2 -. lJ 

The above Eq. (31) can be solved by taking account of the 
external boundary conditions. Due to the symmetry of the model 
(Fig. 2(b)) ,  the shear stresses on every boundary surface are 
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zero. The resulting boundary conditions for the analysis model 
are given as follows: 

rxy=  0, u x =  0 a longA-B  
r . , =  0, u y =  0 a l o n g B - C  
~7~ = 0, r,y = 0 along C-D 
7-~y = 0, uy = (c + h)e0 along D-A. (32) 

Applying the above boundary conditions to Eq. (31) and 
solving the final system of equations at each time step lead to 
determination of  all boundary and interlace displacements and 
tractions. In order to examine the viscoelastic behavior along 
the interface line of  the analysis model subjected to a transverse 
tensile strain co i l ( t ) ,  the viscoelastic model characterized by 
Eq. (18) is employed. The numerical values used in this exam- 
ple are as follows: 

# (0)  = 103 MPa 

#(oo) = 0.5 × 103 MPa 

v0 = 0.35 

k = 0.1/min 

#1l = 105 MPa 

v .  = 0.2 

c / h  = 1 

L / h  = 12.5 

¢0 = 0.01 (33) 

where superscript " / / "  represents the elastic fiber zone, p, is 
the shear modulus, and v is the Poisson's ratio. 

A suitable mesh density was determined for the analysis 
based upon the results of a convergence study for mesh refine- 
ment. The refined mesh was used near the interface corner. The 
boundary element discretization consisting of 36 line elements 
was employed. In this study, quadratic shape functions were 
used to describe both the geometric and functional variations. 
Viscoelastic stress profiles were plotted along interface to inves- 
tigate the nature of stresses. Figure 3 shows the distribution 
of normal stress cry and shear stress %y on the interface at 
nondimensional times kt = 0 and 8. The results exhibit the 
relaxation of the interface stresses and large gradients are ob- 
served in the vicinity of the free surface. 

The singular stress levels near the free-edge can be character- 
ized by two parameters: the order of  the singularity and the 
tree-edge stress intensity factor. The order of singularity must 
be determined from the roots of the characteristic Eq. (21).  

The free-edge stress intensity factor was defined first by Wang 
and Choi (1982).  In this study, the free-edge stress intensity 
factor is normalized by the quantity h -('h+2), giving it stress 
units, as follows: 

K o = lira cro(r, O; t). (34) 

Figure 4 shows the variation of the order of singularity with 
time for the material properties given by Eq. (33).  Since the 
contrast in shear moduli between the two materials becomes 
much greater with time, the order of singularity increases with 
time. For the purpose of comparison, it is interesting to consider 
two elastic cases for the viscoelastic matrix zone with shear 
moduli #1(0) and #1(oo), respectively; i.e., the viscoelastic ma- 
trix material of Fig. 2 (b )  is replaced by an elastic material with 
# / (0)  and p,~(~) and the elastic fiber zone remains unchanged. 
At the initial instant of time kt = 0, the order of singularity in 
Fig. 4 is identical with that for an analysis model consisting of  
elastic matrix with #~(0) and elastic fiber with # , .  At greater 
times, the order of singularity in Fig. 4 approaches that for the 
analysis model consisting of elastic matrix with #l(oz) and elas- 
tic fiber with # , .  Figure 5 shows the variation of the free- 
edge stress intensity factor. It is shown that the free-edge stress 
intensity factor is relaxed with time while the order of singular- 
ity increases with time. It is, however, unclear how these com- 
peting effects will effect failure or fiber-matrix debonding. 
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4 Conc lus ions  
The singular stresses at the interface corner between fiber 

and matrix of a unidirectional two-dimensional laminate model 
subjected to a uniform transverse tensile strain have been inves- 
tigated by using the time-domain boundary element method. 
Numerical results show that very large stress gradients are pres- 
ent at the interface corner and such stress singularity dominates 
a very small region relative to layer thickness. It is also shown 
that the order of singularity increases with time while the free- 
edge stress intensity factor is relaxed with time. Since the ex- 
ceedingly large stresses at the interface corner cannot be borne 
by matrix materials, local yielding or fiber-matrix debonding 
can occur in the vicinity of free surface. 
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Shakedown Analysis for Trusses 
and Frames 
The kinematic method is applied to study the shakedown behavior of certain bar 
structures subjected to variable loads'. For trusses, the possible elastic instability of 
a thin bar in compression is taken into account. In the case of frames, the possibility 
of formulating the problem in generalized variables is explored. The result implies 
that the methods available in plastic limit analysiS, such as the method of hinge 
mechanisms, can be developed for use in shakedown analysis of the structures. 

1 Introduction 

Applications of shakedown theory in structural analysis meet 
certain difficulties, as its mathematical apparatus is much more 
complicated in comparison with that of its special case--the 
plastic limit theory. Nevertheless, efforts have been made to- 
ward implementing the static (mainly) and kinematic theorems 
to solve various practical problems (see, e.g., Koiter, 1963; 
Martin, 1975; Maier and Munro, 1982; K6nig, 1987; Pham 
and Stumpf, 1994; and the references therein). The kinematic 
approach, which is popular and successful in solving elastic 
problems by the finite element scheme and in limit plastic analy- 
sis, seems not to be in such a stage regarding the shakedown 
theory, and therefore deserves further attentions. The difficulty 
comes from the complexity of the kinematic theorem, which 
involves time integrals over loading processes (the static theo- 
rem does not suffers this problem). Based on engineering sense 
and to avoid difficulty, it is widely accepted in practice to con- 
sider separately perfect-incremental and alternating plasticity 
collapse modes. Perhaps the most rigorous mathematical justi- 
fications of the separated criteria are laid down in the mono- 
graph of K6nig (1987). The perfect-incremental criterium is 
derived from the assumption that the plastic strains at every 
point of the body should change both proportionally and monot- 
onously during a cycle. In reality, a deformation process may 
be very complex and is not proportional nor monotonous and 
mixed modes of collapse are possible. Up to the present we do 
not have a general reduced form (based on rigorous proof) of 
the kinematic theorem with separated inadaptation modes 
(which were equivalent to Koiter's original theorem) although 
we have it for a restricted class of problems (Pham and Stumpf, 
1994). An alternative approach in certain circumstances is to 
formulate the static theorem in a discretized standard form and 
then derive the dual problem using the tool of convex analysis 
as suggested in Corradi and Zavelani (1974), Maier and Munro 
(1982), and Kamenjarzh and Weichert (1992). However, since 
the formulation is derived from the static one, in our opinion, 
not much can be expected from the advantage of it over the 
original static formulation. To explore the possible advantage 
of the kinematic approach over the static one in appropriate 
circumstances it is our belief that we should start directly from 
the original kinematic theorem--the same way we go with 

Also at the Department of Mechanical Engineering, The University of Sydney, 
Sydney, Australia. 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS l~)r publication in the ASME JOURNAL OF APPLIED 
MECHANICS. 

Discussion on the paper should be addressed to the Technical Editor, Professor 
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until tbur months after fiual 
publication of the paper itself in the ASME JOURNAl. OF APPIAEI) MECHANICS. 

Manuscript received by the AS ME Applied Mechanics Division, Jan. 30, 1996; 
final revision, July 5, 1996. Associate Technical Editor: R. Becker. 

finite element elasticity from the minimum energy principle and 
in limited analysis with the respective kinematic theorem. 

In recent works (Pham, 1993; Pham and Stumpf, 1994) we 
have succeeded in transforming Koiter's kinematic theorem 
(Koiter, 1963) into a simpler applicable form, which does not 
involve time integrals but is equivalent to the original one, for 
bar structures in the axial and bending deformation mode. Let 
k~ denote the largest coefficient (called the shakedown safety 
factor), the external agencies multiplied by which would still 
keep the structm'e shakedown, then the reduced kinematic theo- 
rem for the bars can be given formally as (Pham, 1993; Pham 
and Stumpf, 1994) 

k,~ = max { I , A } ,  (1) 

where 

• max,, ~r"(x, tx)cI'(x)dV 
I = sup , (2) 

¢,',~c yvcr~lc,,Id v 

cr"(x,  t) - c : ( x ,  t ' )  
A = sup , (3) 

x,,.,' 2cry 

and where cr"(x, t) denotes the fictitious elastic axial stress 
response of the structure V(x c V) to the external agencies in 
the assumption of its perfectly-elastic behavior, which is con- 
fined to a certain bounded loading domain £; eP(x)--axial  
plastic strain; cry--yield stress; and C is the set of compatible 
plastic strain fields. 

As the bars are assumed in the axial and bending deformation 
mode, only the axial components of the stress and strain are 
present, while the other ones are secondary and can be disre- 
garded. However, the stress and strain can vary across any 
section of the bars as well as along their axes. Usually it is 
presumed that the cross-sections of the bars remain planar and 
orthogonal to their axes during deformation, so the set C of 
compatible strain fields should be restricted by that kinematic 
constraint. The plastic strain rate field need not satisfy compati- 
bility conditions but does not appear explicitly in the expression 
of the reduced theorem ( 1 ) - (3). 

It can be seen that term (2) is responsible for incremental 
collapse (the compatible plastic detbrmation increment over a 
cycle eP :~ 0), while the term (3) represents the alternating 
plasticity collapse. 

Generally there is no simple transformation of ( 1 ) - ( 3 )  in 
generalized variables (moments, curvatures, etc.). 

In the reduced form ( 1 ) - ( 3 ) ,  the shakedown theorem is 
very near to the corresponding limit theorem, which through 
the limit safety factor k, can be stated as 
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fV o'e(x) £P(x )dV  
k ;  I =  s u p -  

,"~c f v c r v l e P l d  v 

(4) 

We have known that the shakedown design is more conservative 
than the limit plastic design, which is much simpler. The simi- 
larity between (4) and ( 1 ) - (3) makes us hope that the methods 
available in solving the former can be developed for use in 
solving the latter. 

In plastic limit analysis of frames, one can work with plastic 
hinges. In shakedown analysis, complex distributions of residual 
stresses across the bar sections may be involved and contribute 
implicitly to the complexity of ( 1 ) - (3) .  

2 Trusses Under Quasi-Static Loading 
Consider a truss structure composed of n pin-connected bars. 

The bars of lengths Ii carry axial forces Pi (t) (i  = 1 . . . . .  n ) ,  
which are limited by the yield conditions I Pi] -< Piv. Let ei 
denote the strain of /-bar. The fictitious elastic reactions 
{ pie(t)} of the bars to external agencies are confined to £: 

P~_< P~(t) -< P~,  i =  1 . . . . .  n. (5) 

In this particular case, the reduced kinematic theorem ( 1 ) - (3) 
yields 

kj-' = max { I , A } ,  (6) 

n 

E li" m a x  { PiU,~i, PiLei } 
1 = Sup i=l . , (7) 

I,,l~c E li'PFleil 
i = 1  

pf - et- 
A = m a x -  (8) 

i 2P~ 

For comparison, the corresponding safety factor in limit analysis 
has the form (according to (4))  

n 

Z li "P7ei 
k.71= sup i=1 (9) 

|,,}~c Z l i ' P f l e i l  
i = 1  

If a bar is sufficiently thin, such that P~ > P~, where P~ 
denotes the Euler buckling force for the bar, the compression 
force in the bar can never reach P~', but is restricted by the 
smaller force p/b. So the formulae (6) - (8) should be modified 
accordingly. As the instability at P~ can contribute toward the 
incremental collapse mode (through I) but does not affect the 
alternating plasticity collapse mode (described by A ), the safety 
factor k~b for the problem can be given as 

k.~ I = max {[~h, A }, (10) 

n 

Z li" max { PYei ,  Pfei  } 
Lb sup i=1 = . , (11) 

{,i}ec E li 'D~'(ei) 
i = 1  

By - pf '~ 
A = maxi 2 ~ f  , ]  (12) 

{ P~ei, ei ~ 0 
D~(e~) = I. min { - P Y e i ,  - P ~ e } ,  e~ < 0 

= max {PiVei, min { - P ~ e i ,  -P~'ei}  }. (13) 

3 Shakedown of Frames in Bending 

Consider an n-bar  frame with local longitudinal coordinate 
axes lying along the axes of the bars (beams):  0 ~ xi ~ li, i 
= 1 . . . . .  n. The beams may be variable (but symmetric about 
the bending axis) cross sections. The bending planes of the 
beams are fixed and the compatible axial strain has the form 

ei(xi,  z) = z ' K i ( x i ) ,  - h i ( x i )  ~ z -< hi(xi)  

i = 1 . . . . .  n, (14) 

z is the coordinate normal to and originated from the bending 
axis in the bending plane, Ki is the curvature change of the bar 
axis. 

Respectively, the fictitious elastic axial stress ~r ~ and bending 
moment M~ of the / -beam are related by 

M~(xi, t) 
af(x~, z, t) = z j~ , (15) 

j0 is the second moment of area of the bar cross section. 
The fictitious elastic bending moment response to external 

agencies is confined to £: 

M~(xi )  ~ M~(xi ,  t) -< M ~( x i ) ,  i = 1 . . . . .  n. (16) 

Substitution of (14) - (16) into ( 1 ) - (3) yields the relations in 
generalized variables: 

k71 = max { I , A } ,  (17) 

~1 max {M~' (x i )x i (x i ) ,  M~(xi )Ki(Xi)}dxi  
i= 

I = sup n fl. i 
E,= M~(xi )l Ki (xi)l  dxi {Ki} E C  

( 1 8 )  

M~(xi  ) - MiZ(xi ) 
A = max , (19) 

iai 2Mie(xi ) 

where M~ v is the yield moment and M~ e is the elastic limit 
moment (the moment at beginning of plastic deformations at 
the extreme fibers) of the beam. 

Correspondingly, the limit safety factor for frames has the 
form (according to (4))  

n t =~1 M~(xi )Ki (Xi)dxi 
k71 = sup d= (20) 

t I~,l ~ c 2 MY(x ,  11K~ (x,)1 dx, 
i = l  

The similarity between ( 17 ) - (19) and (20) (in particular, be- 
tween (18) representing the incremental collapse and (20))  
implicates that the methods available in limit analysis of frames 
(see, e.g., Neal and Symonds, 1952; Hodge, 1959; Lubliner, 
1990) can be developed for use there as well (in particular, the 
method of mechanisms with plastic hinges). 

For example, consider a uniform beam 0 -< x -< L (Fig. 
l ( a ) )  clamped at both ends A and C, and subjected to a qua- 
sistatic load P( t )  at the midpoint B of the beam, such that 

pL < P( t )  -< pv .  (21) 

The fictitious elastic moment response of the beam to the 
external load is 
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Fig. 1 (a) A beam clamped at both ends and subjected to a variable load at the 
midpoint; (b) an incremental collapse mechanism with the plastic hinges at A, B, 
and C 

I  inally P(t )"  x _  L , 0 < x < ~ -  -- 

Me(X, t) = t (22) k71 = Max { I, A } 

P( t )  \ 8 2 / '  2 - < x - < c "  = M a X [ 8 M  r , 

The loading domain £ is determined from (21) and (22): 

ML(x)  < Me(X, t) <- M Y ( x ) ,  (23) 

M t = p u  _ , M v =  pC _ 0 < X  <----, 
' - -  4 

- -  - -  - - ~ X ~  , 

' 4 

' ' 2 4 '  

3L 
- - - <  x - -<  L .  ( 2 4 )  
4 

We come to (17). A is determined from (19) and (24) 

MU(x)  _ ML(x)  (pu  _ pL).  L 
A = max - (25) 

x 2M E 16M e 

To evaluate I in (18), we look for kinematically admissible 
incremental mechanisms ¢(x). There are only two possible 
mechanisms with the plastic hinges at A, B, C and the angle 
increment On > 0 or 0B < 0 (see Fig. l ( b ) ) ,  which can be 
given as (6(x)  is the Dirac function) 

I((X) = 0 A " 6 ( X )  + OB ° 6 (X  -- L / 2 )  + Oc" 6(x  - L) ,  

OA = Oc= --0f12, 0n > 0 or 0~ < 0. (26) 

Substituting (26) into (18) and taking into account (24), one 
finds 

_ p L .  L ( p u  _ pL) .  L ]  
8 M  r , "i'~M- ~ f . (28) 

Shakedown theory is not restricted to quasi-static loading, 
but extended to general dynamic loading (Pham, 1992, 
1996), the most important class of which might be the quasi- 
periodic dynamic one, as it is relatively easy to be described 
and supposed to model the wind, wave, and transport loads 
acting upon practical structures. Formulae ( 1 7 ) -  (19) are 
still valid with a quasi-periodic dynamic response M~(x ,  t) 
taking the place of the quasi-static one in (16) .  For example, 
we take again the structure in Fig. 1 under a quasi-periodic 
dynamic loading, 

P ( t )  = Pl sin cot + Po, (29) 

where po, p J, co are arbitrary quasi-static functions of time, such 
that 

p~ <-- po(t) <-- pUo, 0 <-- p t ( t )  <-- p~,  

0 ~- co(t) -< col <coI, (30) 

w~ is the principal natural frequency of the beam. Denote 

O~ = ( m w 2 ~  '/4 ( m w 1 2 ~  1'4 
\ - ~ - ]  , a~ = \ - ~ - ]  , ( 3 1 )  

where m, E, J are the density, Young's modulus, and moment 
of inertia of the beam, respectively. 

The fictitious elastic moment response of the beam to the 
external load is 

I = sup 
OB 

max {MAVOA, M]OA} + max {MBvOn, M~OB} + max {M~Oc, M~Oc } 

MY(IoAI + IOR] + loci) 

max p u  , pL + max { pUO~, PLO~ } + max p v  .=_ 

= sup 
o, Mr"  210~l 

= Max ~pv.____L _ p L . L "  ~ 
( 8 M  r '  8 M  v J "  

(27) 
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M ~ = 

p~ sin wt 

( (cos ax + ch ax)  cos ~ 2 

4a  sh c o s - -  + s i n - -  ch 
2 2 

+ Po" (x/2 - L/8), 0 <- x <- L/2, 

Pl sin cot 

( [ c o s a ( x - L ) + c h a ( x - L ) ]  cos- T -  2 

4a  sh - -  cos - -  + sin ch 
2 2 

+po ' (3L /8 -x /2 ) ,  L/2<-x<--L. 

(32) 

Following the steps as those from (22) to (28)  we get 

k~ 1 = Max {I ,A} ,  

max{c    cos - - ,  sin sh 
A=p__~_. 2 2 2 

2ce~ sh 2 cos 2 2 

(33) 

+ (pg-p~).L 
16ME , (34) 

f O~lL . alL alL 
I = max PlY ch a'2L - c o s - - 2  + sin 2 sh - - 2  

MY ~ { .a lL  a l L . .  oztLchatL ~ 
~o~,~sn--~---cos--~---esm 2 2 ] 

pg 'L  q - - -  
8 M  v ' 

alL alL alL l - -  - cos - -  + sin - -  sh - -  _ p f  ch a l L  

2 2 2 2 poC_'_L 

M v ( ~ alL a,___L_ ch _ ~ )  8MVJ ' 
4al sh cos 2 + sin 2 

(35) 

which determines the limits on the shakedown load for the 
structure. 

4 A s y m m e t r i c  B e a m s  

The concept of generalized stress and strain (moments, curva- 
tures . . . .  ) is useful not only in elasticity, but also in plastic 
limit analysis of beams and arches and frames (Prager, 1959). 
In shakedown theory, and generally in elastoplastic analysis of 
the structures (except the simple cases of trusses and ideal 
sandwich beams),  additional complexities may arise from pos- 
sible local distributions of residual stresses and plastic strains, 
which should be treated specifically. In the previous section we 
are able to give a simple formula for the shakedown factor of 
symmetric beams in the generalized variables. In this section 
we study bending of the beams, whose cross sections are asym- 
metric about the bending axis. Symptoms of difficulties have 
already been observed in Pham and Stumpf (1994) concerning 
the symmetric bars under combined axial and bending loads. 
For simplicity of notations, we take a single beam (0 -< x -< 
1), but the result also applies to the frames composed of beams 
as in the previous section in the respective sense. As in (15),  
the fictitious elastic axial stress ae and bending moment M e are 
related by 

Me(x, t) 
~ z e ( X , Z , t ) = Z  - - ,  h-(x)-<z-<h+(x) ,  (36) jo  

with z = 0 being the elastic bending axis ( jo  is the second 
moment of  area of  the section relative to this axis),  the external 
agencies being such that M e is restricted by 

ML(x) <-- Me(x, t) <- MY(x). (37) 

As the beam is asymmetric, the bending axes change their posi- 
tions in the cross sections during plastic deformations; so instead 
of (14),  the compatible plastic axial deformation field c should 
have the form 

e(x,z) = [ z -  c(x)] 'x(x) ,  h-(x) ~- c(x) -< h+(x), (38) 

with c(x) being a function of the axial coordinate. 
Now, substituting (21 ) - (23) into ( 1 ) - (3) one can get 

k, i = Max {I, A},  (39) 

fi ' U(MV, M L, K, c)dx 
I = sup , (40) p. 

K@ C,h ~ c ~ h  + 

J0 D(K, c)dx 

MY(x) - ML(x) (41) 
A = maxx  2Me(x) ' 

where (S°(x) is the area of the cross section and ev is the yield 
stress in tension) 

= f max a"(x, z, tDe(x, z)dS U 
as. o 

=Is max['z ] o jo K dS, (42) 
tx 

O= fsoa~leldS= fs, oCrVdz-cllKldS. (43) 

Let S(zl, z2) denote the area of the part of  the cross section that 
lies between the lines z = z~ and z = z2, which are olrthogonal to 
the bending plane. F(zl, z2) and J(z~, z2) are, respectively, the 
static moment and second moment of area of the part relative 
to the axis z = 0. We calculate (42) and (43) 

D=[fs<h_~(c-z)dS+fs<c.,+(Z-c)dS]'~vlKF 

= [ S ( h - ,  c )"  c - F ( h - ,  c )  

+ F(c, h +) - S(c, h+) • C]'~IKI (44) 
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U = ~o [ fs(h ,o) (z - c)zdS + ~s(c,h+) (z - c)zdS ] 

× max {MVK, McK} 

1 
f (z - c)zdS'min {M~JK, MLK} 

4- ~ s(O,c) 

l 
[J(h , 0 ) -  c . F ( h  O) + J(c ,h  +) j o  

- c 'F(c,  h~) ] .max  {MUK, MrK} 

1 
+ ~ [J(0, c) - c'F(O, c ) ] ' m i n  {MUK, MLK} 

(c --> 0); (45) 

1 
g= [f,,, ,ct(z-c)zds + f,,o,t+ (z-c)zdS ] 

× max {MVK, Mrs:} 

1 f~. (z - c)zdS'min {MUK, MLK} 
4- -j~ (c,O ) 

1 
= j-d [J(h- ,c)  - c .F(h ,c) + J(O,h ~) 

- c.F(O, h+)] .max {MUK, MrK} 

1 
+ ~ [J(c, O) - c.F(c,  0 ) ] ' m i n  {MVK, Mr'K} 

(c < 0). (46) 

Comparing ( 1 7 ) - ( 1 9 )  with ( 3 9 ) - ( 4 1 ) ,  we see that in the 
latter appears a new variable c(x) in addition to the generalized 
kinematic variable K(x). In the case of symmetric beams c(x) 

0, the latter formulae reduce to the former. If the upper 
bound method of plastic hinge mechanisms is applied, at a hinge 
section the variable c(x) is determined from the yield condition 
for the section. Generally, however, exact c(x) together with 
K(X) should be found from the optimization problem ( 3 9 ) -  
(41), ( 4 4 ) -  (46). The ultimate presence of the variable c(x) 
in the formulae contributes to difficulties of shakedown analysis 
in comparison with limit analysis, for which a rigid plastic 
analysis with plastic hinges is sufficient to determine the exact 
limit load. 

In summary, we have not yet a general reduced form of 
shakedown kinematic theorem with separated incremental and 
alternating plasticity collapse modes; however, we have such a 
form for trusses and frames. Certain similarity of the reduced 
form with the kinematic theorem in limit analysis suggests that 
the methods available in solving the latter can be developed to 
study the former. However, there are differences that we should 
be careful about. In limit analysis, rigid plastic schemes are 
sufficient to determine the collapse load, while in shakedown 
analysis the elastoplastic state of the structures should be taken 
into account. Shakedown analysis applies also to dynamic load- 
ing problems (here we would like to make an emphasis on 
quasi-periodic dynamic loading), which lie outside the frame- 
work of limit analysis. 

This study is concerned with the shakedown of bar structures. 
A more general aspect of the kinematic method is addressed in 
Pham and Stumpf (1994) and Pham ( 1996, 1997). 
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An Analysis of the Plane-Strain 
Compression of Viscoplastic 
Materials 
A theoretical analysis for the plane-strain compression ofviscoplastic materials with 
a Tresca wall boundary condition is described. The analysis is based upon the 
incorporation of a viscoplastic associated flow rule into the cyeloidal solution origi- 
nally developed for rigid-perfectly plastic materials. The evolution of the calculated 
stress field suggests that the infuence of strain rate hardening is similar to that 
reported previously for strain hardening. The calculated strain fields' are elliptical 
in form and are consistent with those measured for a viscoplastic paste. Previous 
analyses of the compression of viscoplastic materials have employed the lubrication 
approximation for fu id  flows with a resulting kinematic inconsistency in the predicted 
velocity fields'. 

1 Introduction 
Zienkeiwicz and Goodhale (1974) have examined the defor- 

mation of elasto-viscoplastic materials under large imposed 
strains when the elastic components may be neglected. They 
showed that such deformations could be usefully considered in 
terms of a non-Newtonian flow rule with the viscosity being a 
function of the current strain rates. In particular, on the basis 
of a viscoplastic associated flow proposed by Perzyna (1966) 
they were able to derive a constitutive relationship which is 
equivalent to that for a Bingham fluid where the flow stress is 
given as the sum of a plastic and a viscous component. The 
Herschel-Bulkley (1926) fluid is a more general form for this 
class of materials where the viscous component is given by a 
power-law term. 

A common means of measuring the material parameters for 
the above "plastic fluids" is by compression between parallel 
platens. This is termed "squeeze flow" and is similar to the 
upsetting technique used for metals. Squeeze flow has been 
analysed using the lubrication approximation to the Navier- 
Stokes equation (Covey and Stanmore, 1981). However, this 
leads to an inconsistency in the calculated velocity field (Lips- 
combe and Denn, 1984; Adams et al., 1994). An unyielded 
region is predicted that is centred upon the midplane, parallel 
to the platens, with flow regions developed between this region 
and the surfaces of the platens (Fig. 1). In order to maintain 
continuity, the unyielded region would have to extend during 
closure of the platens which would violate the yield condition. 
This arises because of the difficulty in introducing a three- 
dimensional yield criterion into fluid dynamics analyses; the 
lubrication solution is based upon prescribing a critical shear 
stress for plastic flow to be instituted. 

The plane-strain compression of plastically deforming mate- 
rials between two parallel plates has been the subject of a num- 
ber of studies. In the case of rigid-perfectly plastic materials, 
Prandtl (1923) obtained an analytical expression for the stress 
field (the cycloidal solution) while a corresponding velocity 
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solution was derived by Nadai (see Hill, 1950). Collins and 
Meguid (1977) extended these solutions for materials that ex- 
hibit both isotropic and anisotropic strain-hardening behavior. 
In this paper, we will describe how the solution may be adapted 
for viscoplastic materials which avoids the inconsistency associ- 
ated with the lubrication solution. 

2 Formulation 
The coordinate system is shown in Fig. 2 for platens of width 

l (=2L),  instantaneous gap h (=2H),  and a constant closure 
velocity u ( = 2 U). Tresca wall boundary conditions are assumed 
such that the wall shear stress (~-w) is given by 

7-w = mk (1) 

where m is the interfacial friction factor (0 -< m --- 1 ) and k is 
the bulk shear yield stress which is a function of the strain rates 
(see later). The reduced yield criterion may be written in terms 
of the normal stress crx and cry in the following form: 

1 Sxy . . . .  ~(crx -- O'y) g(7"xy, y) ± [ k  2 Txy ] 2  nil2 (2) 

where g is a function of the shear stress, 7xy, which is dependent 
on y but not on x. This corresponds to the limiting field condi- 
tion when the width of the compressed material is much greater 
than its height. 

The associated flow rule may be expressed as 

tan 24, - -sx~___= _ 1 crx - cry 1 ex - ey (3) 
~- 2 7x~, 2 exy 

where ex, ey, and exy are components of the strain rate tensor. 
From Eqs. ( 1 ), (2), and (3), together with the equilibrium and 
continuity conditions, the following relationships for the stress 
and velocity components may be obtained (see Collins and 
Meguid, 1977): 

Tw 
cry = - - x +  Ci (4) 

H 

where Cl is a constant of integration. 

Tw crx - - x  + C~ + 2(k 2 a 1/2 = - ~-xy) (5) 
H 

- -  - 7 -  w 

- - - y  ( 6 )  Txy --  H 
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Fig. 1 Schematic of a squeeze flow rheometer 

- U  
vy = ~ y (7) 

Vx H x • cot 2&dy (8) 

The forms given by (4) - (8) are valid forx > 0 with suitable 
symmetry for x < 0. The viscoplastic constitutive flow rule 
proposed by Perzyna (1966) may be written as follows: 

Of  (9) 
e~j = y(~b(F)} Ooi; 

where 3' represents the fluidity which has units of reciprocal 
time, q5 is a material function that defines the strain-rate depen- 
dency, ao is the total stress tensor, F = 0 is the static yield 
function, f is the dynamic yield criterion defining the viscoplas- 
tic overstress, and ( ) are Macauley's brackets. We will con- 
sider the general case where 4,(F) is taken as being equal to 
F"".  Inversion of this function leads to a relationship that is 
analogous to a Herschel-Bulkley fluid, thus 

(lO) 

where k0 is the static shear yield stress and k is the correspond- 
ing dynamic value. The second invariant of the viscoplastic 
strain rate tensor, I~ ~' 1 = (se0eo), is given by 

[ 2 4 1 ~ P : 2  (Ovy~2+ ( O u ~  2] + [0Uy + ( l ' )  
\ oy / \ Ox l J k Ox Oy j 

where eq is defined as 

(Ovi + Ov~'~ and I~ p = ~2 = { ~.0v~. 2 in simple shear flow. 
\ OXj OX i / \ Oy ] 

We see from (10) that y may be regarded as a characteristic 
shear rate for the material. 

If (I~ p) ~/2 ,~ y, the material is perfectly plastic, with constant 
yield stress, whereas for the opposite extreme, the material be- 
haves as a purely viscous power-law fluid and the static yield 
stress is unimportant. This is illustrated in Fig. 3. 

Now using (7) and (8) in (11) we obtain 

/ [ 9  
(I~P) ~/2 = =-~- Icosec 24~1 (12) 

H 

where, from Fig. 4, it may be seen that 

1 

and consequently (12) becomes 

2U ( ~_2 y~,~-1/2 
(I~P) ~/2 = - ~  1 - k ~  / " (14) 

Substituting (14) into (10) and setting y / H  = y* we obtain 

[ 2 U ] "  1 (15) 
k = k o  1 + L TH] ~7 j j 

which is an implicit nonlinear equation relating k to y*. 
At the boundaries y* = _+1, % = mk (Fig. 5) and hence 

- 2U n , ,  -n/2} 

is determined explicitly from (15). By assigning values of m, 
ko, U, y, n, H a value of ~-w may be calculated using Eq. (16) 
which may be substituted in (15) to obtain the function k(y* ). 

Taking the mean value of c~x ( - L )  as zero gives the following 
result using (5) and (16) 

~r,(±L)dy = 2mkoL 1 + (1 - m 2) ,,~2 
H 

+ 2H(C,  + C2) = 0 (17) 

where C2 = f+i (k~ - ~r2.~ )~/2dy* is not a function ofx  or y. 
Thus from (17) we may obtain an expression for the integra- 

tion constant C~, 

{ ) C~ = - m k o L / H )  1 + (1 - m2) -'/2 - C2. (18) 

Substitution of (18) into (4) gives the pressure distribution 

= = (m o,H) 1 + ( 1  - 

X ( L - x )  + C2. (19) 

The mean imposed pressure over the platen surface, 17, is 
then given by 

17 = - ~ %dx  = (mkoL/2H)  

× 1 + [ ~ J  ( 1 - m  2) ,,/2 + C2. (20) 

The first term on the RHS of (20) may be seen as a direct 
effect of boundary friction, while C2 represents a constant offset 
in the pressure related to the dynamic yield stress at the edge 
of the material sample. 

The velocity fields are given by (7) and (8) with (13): 

, ~ -U{,/ , m k  

t - -  Y 
. . . . . . . . .  . . . . . . . .  . . . . . . . . . . . . . . . .  

L ! x 

i ~ g : ,  , d  

~U 'mk  

Fig. 2 The squeeze flow nomenclature 
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Fig. 3 The HerscheI-Bulkley constitutive model; a log-log plot of k/ko 
v e r s u s  1~/2/~ 

- U  
Uy = -~- y = -Uy* (21) 

vx H x - cot 24~dy 

= - - x  + 7~y dy + C~ (22) 
H (k ~ - - 2  ~n - -  T x y  ) 

where C3 is a further constant of  integration. 
Since the value of k is not constant, the integral in (22) is 

not readily evaluated in closed form. We temporarily denote 
the y-dependent part of the velocity by 

v~ (y*)  = - 2 U  cot 2cMy*. (23) 

The integration constant in the velocity profile solution may 
then be derived from global conservation of mass which requires 
that 

fo' v~dy* = (24) 
gx 
H 

Hence from (22) we obtain 

f0' C3 = - v~ (y*)dy*. (25) 

Thus, the x component of the velocity is given by using (25) 
and (23) in (22) 

v~ = --  x - 2U cot 2(0@* 
H 

- f j f ] ' *co t2c~dy*dy*] .  (26) 

Fig. 4 The static yield surface (for x > 0, y > 0) 
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Displacement fields may be obtained by time integration of  
the velocities (21) and (26).  We note that since (vy) (21) is 
linear in y and independent of x, material elements retain their 
vertical position relative to the platen separation, id est. y* = 
constant for a material element. The x-component of  displace- 
ment is given by integration of (26) in which the RHS is a 
function of x, y* and time (t) .  Since y* is constant for a 
material element, time integration is relatively straightforward. 

f0 X(t) = vx(X, Y, t)dt (27) 

fo Y(t) = v,.(Y, t)dt (28) 

In evaluating the analysis, we see the importance of a dimen- 
sionless parameter ~ = 2U/yHo which may be regarded as the 
Weissenberg number, a ratio of the characteristic shear rate of 
the flow (2U/Ho) to the characteristic shear rate of the material, 
y. The other key dimensionless constants are the slip parameter 
m and the flow index n. The independent variables may be 
taken as y* = y/H, x* = x/H and H/Ho which serves as a 
measure of a dimensionless time, where H0 is the initial thick- 
ness. The solution to the implicit equation for the flow stress 
(15) was obtained using a simple numerical routine. The solu- 
tions for the pressure distribution, velocity and displacement 
fields were arrived at by successive evaluation using numerical 
integration. 

3 D i s c u s s i o n  

Given the assumptions of the analysis, that the strain rates 
are independent of x and the incompressibility condition, as the 
" t i m e "  and/or  the deformation progresses, a given material 
element will maintain the same relative distance from the platen 
and plane of symmetry, hence y* is incorporated as a dimen- 
sionless geometric parameter. By plotting the dimensionless 
ratio k/ko as a function of y* (Fig. 6) we may visualize the 
variation of the yield stress throughout the material strip as a 
function of m, the interfacial friction factor and deformation 
ratio (H/Ho). When a strain-rate-dependent solid is initially 
compressed, the plastic response will predominate within the 
bulk. However, as time proceeds, i.e., at larger deformations, 
the viscous response will become significant provided that a 
critical shear strain rate has been achieved. This is exemplified 
in Fig. 6 which shows profiles from an analysis carried out at 
a moderate velocity (such that ~ = 1) with n = 0.2 and m = 
0.1 (Fig. 6 ( a ) ) .  If  the analysis is now repeated with m = 0.9 
(Fig. 6 (b ) )  the flow stresses are no longer linear due to the 
effect of  reduced slip at the walls (increasing the wall shear 
stresses); we note the sharp increase in the value of  k/ko as y* 
approaches unity. If the value of m is now reset to 0.1 but the 
platen velocity is increased by two orders of magnitude ( ~  = 
100) the flow stresses are once again linear (Fig. 6 ( c ) ) ,  how- 
ever, the corresponding flow stresses have significantly in- 
creased. This reflects the strain-rate-dependent nature of the 
constitutive model. Figure 6 (d)  has been calculated for m = 
0.9 and again a marked increase in the stress variation may be 
observed. Examination of (15) and (16) shows that viscous 

! - T  

I 

i 

Fig. 5 Schematic, diagram of the boundary condition 
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effects are significant only if ~2 is of order unity or larger; if ft 
is small, the material is perfectly plastic. When viscous effects 
are present, the degree of inhomogeneity is determined first by 
m and then by n. If m is small, there is near perfect slip and 
deformation is nearly homogeneous. If m is large, there is sig- 
nificant boundary friction leading to shear deformation and in- 
homogeneity; the degree of inhomogeneity thus increases with 
m and n. 

The behavior of the through-thickness yield stress ratio is 
very similar in form to that shown by Collins and Meguid 
(1977) for isotropic strain-hardening materials. For a small 
value of the interfacial friction factor, the wall stress boundary 
condition is close to frictionless so that the material deforms 
almost homogeneously. Thus the response is essentially that 
which would be obtained from a conventional cycloidal analysis 
for a rigid-perfectly plastic material at an appropriate value of 
the yield stress. At a constant closure velocity, the effective 
strain rate increases as the deformation proceeds leading to an 
increase in the dynamic yield stress. At large values of the 
friction factor, approaching the fully rough condition, there is 
a significant departure from homogeneous deformation with 
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Fig. 7 Pressure distribution as a function of radial distance (x). Higher 
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larger strain rates, and hence flow stresses, generated near the 
platens. 

Figure 7 shows the pressure distribution as a function of 
radial distance plotted for the same values of interfacial friction 
and platen velocity as in Fig. 6. In each case, the pressure is a 
linear decreasing function of position with a finite positive value 
at the edge of the specimen corresponding to the local yield 
stress. This edge yield stress depends upon the shear rate (~2) 
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Fig. 8 An analytically generated deformed mesh 
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Fig. 9 Potato paste before and after the deformation process 

while the peak pressure in the center of the specimen is strongly 
affected by both f~ and m. Smaller values of m give a more 
homogeneous pressure distribution, while larger values lead to 
very high pressures and strong gradients. 

An example of the strain field generated at a high value of 
the friction factor is given in Fig. 8. Figure 8(b)  shows the 
elliptical distortion as would be expected from a cycloidal solu- 
tion. That is, the material is fully yielded across the thickness. 
This is in marked contrast to the partially yielded response 
predicted by the lubrication solution. It should be pointed out 
here that the lubrication analysis has been carried out by 
applying the no-slip wall boundary condition, which would be 
equivalent to a friction factor equal to unity. As discussed by 
Collins and Meguid (1977), for strain-hardening materials, this 
condition corresponds to an unbounded yield stress at the platen 
walls which physically would have to be treated in terms of a 
wall boundary layer. This is exactly the behavior that is ob, 
served for viscoplastic particulate suspensions (Adams et al., 
1993). In these cases, the high local strain rates cause the parti- 
cles to migrate away from the walls, generating a depleted 
lubricating layer. The wall stress boundary conditions employed 
for such materials are essentially Tresca in nature although there 
may be a slip velocity dependence once a critical wall shear 

stress has been exeeded. The current analysis would require 
significant extension to take account of such slip velocity ef- 
fects. 

The quality of the predictions obtained from this analysis is 
exemplified via the displacement profiles. Figure 9 shows a 
photograph of potato paste before and after deformation in an 
axisymmetric squeeze flow geometry. This compares well with 
the analytically generated mesh (Fig. 8) based upon the relevant 
material parameters. Even though it is not possible to make 
quantitative comparisons between the axisymmetric experiment 
and the current (two-dimensional) model, the qualitative simi- 
larity to Fig. 8, which is based upon the same material parame- 
ters, is compelling. 
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C o n t a c t  P r e s s u r e s  as an  Elas t ic  
Ro l l er  Crosses  a S c r a t c h  

J. A. Greenwood I 

The Westergaard method of  plane elastic analysis is used to 
obtain an exact solution to the problem of  an elastic roller 
crossing a gap, intended to represent a scratch, on a rigid half- 
space. 

There is considerable interest in what happens to the stress 
distribution when a roller in a roller bearing crosses a scratch. 
We show here that a related problem, that of an elastic roller 
crossing a scratch on a rigid half-space, possesses a rather sim- 
ple exact solution. 

The Westergaard complex variable method for plane-strain 
elasticity is ideally suited to the study of  frictionless contact 
problems between half-spaces. Although the formulation of the 
method and the determination of the internal stresses involve 
complicated algebra (Westergaard, 1939), the result is that an 
analytic func t ionf (z )  exists such that on the surface of  the half- 
space z = x + 0i the real part o f f ( z )  is the contact stress (i.e., 
minus the contact pressure) while the imaginary part is the 
surface slope (actually the slope multiplied by half the plane- 
strain elastic modulus, ½E' Ov/Ox). Thus, f ( x )  must be purely 
imaginary outside the contact region, while inside the contact, 
its imaginary part must take prescribed values appropriate to the 
contact geometry. Westergaard shows that the stress function 
representing a point load P at the origin is s i m p l y f ( z )  = - i P /  
7rz, from which it follows that for any stress function f ( z )  the 
total load can be found from the coefficient of z -~ in the expan- 
sion o f f ( z ) .  In applying the method, it is frequently necessary 
to recall that the functions f ( z )  = z 1/2 and z -1/2 are real for y 
= 0, x > 0 and purely imaginary for y = 0, x < 0, and that in 
passing from x > 0 to x < 0 in the upper half-plane the first 
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changes from x s/z to +ilxl"2 and the second from x - m  to 
- i l x l  - m .  

Westergaard shows that the stress function for the Hertz prob- 
lem of the contact between a rigid roller of radius R and an 
elastic half-space is f ( z )  = - i K [ z  - z ~  - b2], since this is 
pure imaginary (no contact pressure) for y = 0, Ix[ > b, while 
for y = 0, I x l < b the imaginary part is - Kx, which will annul 
the initial slope due to the shape of the roller provided that K 
= E ' / 2 R .  The real part is then - K b ~  - x 2, giving the usual 
contact pressures. For z large we have f ( z )  ~ - iKb2 /2z ,  so 
that the load is W = ½7rKb2: this may be verified by direct 
integration of the contact pressures. 

C e n t r a l  S c r a t c h  

We wish to extend Westergaard's solution to the case of an 
elastic roller in contact with a rigid half-space, where part of 
the half-space is missing (a " sc ra t ch" ) .  We examine first a 
centrally located scratch, extending from x = - a  to x = + a  
when the contact region extends between ±b ;  of course a < 
b. Consider the stress function 

f ( z )  = - i K z [ 1  - ~VZ 2 _ a2 j (1) 

On the real axis the square root is real except for a < I xJ < 
b, so contact pressures are restricted to these regions and are 
equal to p ( x )  = Klxl  ~/(b z -  xa ) / (Z  - a2). In the contact 
regions the slope is ( l / 2 ) E ' ( 0 v / 0 x )  = - K x  as in the Hertz 
solution above, so that again we require K = E ' / 2 R .  For z 
large we h a v e f ( z )  - - i K ( b  2 - a2)/2z,  so the total load is W 
= ( 1 / 2 ) 7rK(b 2 _ a 2). Thus, the presence of  a scratch extending 
from - a  to +a  increases the size of the contact region according 
to the simple rule 

b 2 = b~ + a 2 (2) 

where bn is the Hertzian half-width. What is more important, 
it leads to stress singularities at the edges of the scratch, as 
shown in Fig. 1 (a) .  

The surface slope in the noncontact regions is equal to 

1 2 ~x = Kx x2 1 (3) 
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Fig. l(b) Roller crossing a central scratch: shape 

from which the deflection is found to be 

,[ v = ~ - ~  ( a  ~ - x =) - ( ( a  ~ - x ~ ) ( b  = - x ~) 

- (b 2 - a 2) sinh -~ ~/b2 _ - ~ j  for I x l  < a ( 4 )  

and the shape of the deformed roller is the same expression 
omitting the first term. Note that (inevitably) the roller surface 
is vertical at the edges of the scratch, so that this solution is 
valid only if  the scratch edges are vertical (see Fig. 1 (b).  For 
completeness we give the shape for x > b: 

h = _~1 ~ +~/(x2 _ a2)(x2 _ b2 ) 
2R k 

- (b 2 - a 2) s inh- '  W~'b2 - a z j  ' (5) 

for a scratch of width 2a centred at x = d we suppose contact 
to extend from x = - b  to x = +c .  Consider the stress function 

f ( z ) = _ i K [ z _ ( z _ e ) ~ ( ( z + b ) ( z - c )  ] 
z - d + a ) ( z - d - a )  " (6) 

Provided that - b  < (d  - a)  < (d  + a)  < c, the square root 
will be real for x > c, for (d  - a)  < x < (d  + a) ,  and for x 
< - b  so that contact is restricted to the two regions - b  < x 
< ( d - a )  a n d ( d +  a) < x <  c. 

For large z the square root behaves like 

~ - - ~  1 + (b - c + 2d)/2z 

so that 

f ( z )  ~ - i K [ z -  { ( z -  e) + ( b -  c + 2 d ) / 2  + O(z ~)}], 

and for a finite load we must have 

e = d + (b - c)/2. (7) 

From the next term in the expansion o f f ( z )  the total load is 
found to be 

W = 
7rE' 

16R 
[(b + c) 2 + 4e(b - c) - 4a 2] (8) 

or, more conveniently, 

( b - - ~ ) 2  = b~ + a2 + e(c = b) (9) 

where ba is again the Hertzian half-width for the same load. 
However, an extra condition needs to be imposed: the combi- 

nation of  the original roller shape and the displacement gives 
a constant " g a p "  over each of the two contact regions, but as 
yet the " g a p s "  are unequal, so that only one of  them can be 
set to zero to give contact. Equal gaps requires that 

f[ +" O(v + h________~ 0 dx i.e., 
_, Ox 

~-° "Va - ( x - d )  J 

from which we obtain e in terms of  b, c, a and d: 

f"+° ~(c - ~)(b + x) dx e 
ca- .  a 2 - ( x - d )  2 

r , '+° ](c - x ) ( b  + x) 
= L _ ,  x ~ c ~ : ~ x : 5 ~  dx. (10) 

Since e - d = ( b - c) /2 this equation relates the three variables 
b/a, c/a and d/a. 

Setting x = d + a sin 0 converts it to a form suitable for 
numerical integration: 

a a 
b - c 1 + sin 0 1 

2a ~/2 (b + d) (c - d) 
) f./2 / (  a sin0)(1 ___a__ - ) sin0 d O = d _ , / 2 ~ \ l  + ( b + d  ) ( c _ d )  sinO sinOdO. (11) 

Scratch at any Location 
Suppose now that the scratch is offset from the centre of  the 

roller. On the basis of the above solution, we expect the presence 
of an off-center scratch to lead to an increase in the contact 
width, but by differing amounts on the two sides. Accordingly, 

In practice, this equation was used iteratively (together with 
(9))  to determine b and c for given values of a and d, start- 
ing by setting b and c equal to the Hertzian value bn for the 

desired load (or better, to ben  + a2). With consistent values 
of a,  b, c, d, and e the contact pressures can then be found: 
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Fig. 2 Offset scratch (d : 0.5) of varying width 

Table I Exact results: (b, c) for b n  = 1 

dXa 0.1 0.2 0.4 

0.1 1.0045, 1.0055 1.0180, 1.0219 1.0706, 1.0847 
0.3 1.0038, [.0071 1.0153, [.0274 1.0603, 1.1053 
0.5 1.0033, 1.0099 1.0133, 1.0302 1.0525, 1.1374 
0.7 1.0029, 1.0161 1.0117, 1.0592 1.0459, 1.19ll 

BRIEF N O T E S  

× ~ 5  _ x 2. But this requires both bodies to behave elastically 
as half-spaces. Treating a roller as a half-space is legitimate; 
and the same would be true for a shallow scratch. But our 
solution requires the scratch to have vertical edges, in order to 
avoid contact with the bulge which appears on the roller, and 
this is not acceptable. In practice, the edges of the scratch will 
deform (by much more than the same points of an elastic half- 
space), reducing the singularities in contact pressure to an un- 
known extent. Equally, the presence of the scratch will change 
the size of the contact area even when the scratch is not in the 
contact, a feature quite absent from our solution. So unfortu- 
nately, this analysis does not give any information about the 
practical problem of an elastic roller crossing a scratch on an 
elastic half-space. We can only hope that perhaps it may be of 
use in the development of a computer program designed for the 
real problem. 
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lib + p(x)=~ I x - e l  for iT-ziF j 

- b  < x  < d -  a; d +  a < x  < c (12) 2 

Note that (c - b) is usually small, so that the increase in 
contact width is much the same as for the central scratch (and 
so small) ; but there is always a slight shift to the side containing 
the scratch. Figure 2 shows the pressure distributions for the 
cases d = 0.5, a = 0.1, 0.2, 0.3, and the corresponding Hertzian 
pressures. 

Narrow Scratch 
If a is small, an approximate solution is readily found. Ex- 

panding the square root in ( l I ) in series and integrating term 
by term gives, writing kl = a/(b  + d),  k2 = a / (c  - d): 

- ~ 1 + 5  - - - -  . (13) 

Using this together with (9) enables b and c to be found by 
iteration on a hand calculator. The approximation works well 
for scratches of plausible widths which are not too eccentric: 
for example, with d = 0.5, a = 0.2, and bn = l, the answers 
agree with the table to four decimals. 

Discuss ion  
In many contact problems the extension from a single elastic 

body to two is trivial, requiring only the replacement of the 
plane strain modulus of the single elastic body, E ' ,  by the 
"contact  modulus"  E*,  combining the elasticities of the two 
bodies according to E* ~ = El  ~ + E~ ~ (see, e.g., Johnson, 
1985). Thus, for examLle, the Hertzian pressure distribution 
p(x )  = ( E ' / 2 R ) ~  - x 2 becomes simply p(x )  = (E*/2R) 

2 The factor I x - el is mathematically misleading, and gives the correct result 
only because the point x = e never lies inside a contact region. The sign changes 
are actually due to the square root. 

On the P rob lem  of Equi l ibr ium 
Length of a Br idged Crack  

N.  M o r o z o v  3, M .  P a u k s h t o  3, a n d  

N.  P o n i k a r o v  3 

A solution is given for  a partially bridged straight crack in 
orthotropic elastic material in particular unidirectionally fiber- 
rein/orced brittle composite. The problem of crack with constant 
bridging .fi)rces is solved by use the complex potentials. By use 
of  Novogilov's fracture criterion the estimation of the bridged 
part of  crack and.full length of  equilibrium crack is obtained. 

1 In troduc t ion  

The toughness of brittle solids such as ceramics can be in- 
creased considerably by the use of fibers which bridge micro- 
cracks. Experiments show that cracks being normal to fibers 
spread rectilinearly and can be bridged either partially or fully. 

Nemat-Nasser and Hori (1987) have obtained a complete 
solution for a fully or partially bridged straight crack in a trans- 
versely isotropic elastic material. But that solution contains such 
a parameter as the length of a bridged part of  a crack which 
was not known in advance. This length may be obtained from 
the strength criteria of a fiber (Budiansky et al., 1995) and 
a matrix (Novozhilov, 1969; Morozov and Paukshto, 1994). 
According to the criterion the average stress near the crack-tip 
can he no greater than the matrix strength. The averaging should 
be used over size perculiar to the given material. This is the 
distance between fibers for a unidirectionally fiber-reinforced 
composite and a straight crack. The model gives the opportunity 
to estimate the critical length of equilibrium crack. 
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solution requires the scratch to have vertical edges, in order to 
avoid contact with the bulge which appears on the roller, and 
this is not acceptable. In practice, the edges of the scratch will 
deform (by much more than the same points of an elastic half- 
space), reducing the singularities in contact pressure to an un- 
known extent. Equally, the presence of the scratch will change 
the size of the contact area even when the scratch is not in the 
contact, a feature quite absent from our solution. So unfortu- 
nately, this analysis does not give any information about the 
practical problem of an elastic roller crossing a scratch on an 
elastic half-space. We can only hope that perhaps it may be of 
use in the development of a computer program designed for the 
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Note that (c - b) is usually small, so that the increase in 
contact width is much the same as for the central scratch (and 
so small) ; but there is always a slight shift to the side containing 
the scratch. Figure 2 shows the pressure distributions for the 
cases d = 0.5, a = 0.1, 0.2, 0.3, and the corresponding Hertzian 
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panding the square root in ( l I ) in series and integrating term 
by term gives, writing kl = a/(b  + d),  k2 = a / (c  - d): 
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for scratches of plausible widths which are not too eccentric: 
for example, with d = 0.5, a = 0.2, and bn = l, the answers 
agree with the table to four decimals. 
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plane strain modulus of the single elastic body, E ' ,  by the 
"contact  modulus"  E*,  combining the elasticities of the two 
bodies according to E* ~ = El  ~ + E~ ~ (see, e.g., Johnson, 
1985). Thus, for examLle, the Hertzian pressure distribution 
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rein/orced brittle composite. The problem of crack with constant 
bridging .fi)rces is solved by use the complex potentials. By use 
of  Novogilov's fracture criterion the estimation of the bridged 
part of  crack and.full length of  equilibrium crack is obtained. 
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The toughness of brittle solids such as ceramics can be in- 
creased considerably by the use of fibers which bridge micro- 
cracks. Experiments show that cracks being normal to fibers 
spread rectilinearly and can be bridged either partially or fully. 

Nemat-Nasser and Hori (1987) have obtained a complete 
solution for a fully or partially bridged straight crack in a trans- 
versely isotropic elastic material. But that solution contains such 
a parameter as the length of a bridged part of  a crack which 
was not known in advance. This length may be obtained from 
the strength criteria of a fiber (Budiansky et al., 1995) and 
a matrix (Novozhilov, 1969; Morozov and Paukshto, 1994). 
According to the criterion the average stress near the crack-tip 
can he no greater than the matrix strength. The averaging should 
be used over size perculiar to the given material. This is the 
distance between fibers for a unidirectionally fiber-reinforced 
composite and a straight crack. The model gives the opportunity 
to estimate the critical length of equilibrium crack. 

St. Petersburg State University, 198904 St Petersburg, Russia. 
Contributed by the Applied Mechanics Division of  THE AMEalCAN SOCmTY 

OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED 
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, 
Nov. 13, 1995; final l~vision, Mar. 24, 1996. Associate Technical Editor: 
X. Markenscoff.  

Journa l  of  App l ied  M e c h a n i c s  JUNE 1997, Vol. 64 / 427 Copyright © 1997 by ASME
Downloaded 04 May 2010 to 171.66.16.34. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

, ,ll ,~Y 

lu 
1 

Fig. 1 The bridged crack 

~X 

2 C r a c k  in O r t h o t r o p i c  M e d i a  

Let us consider a partially bridged crack (Fig. 1 ). The fibers 
are broken in the middle part of crack, hut they provide crack 
surfaces interaction near crack tips. A bridging law was obtained 
by Budiansky et al. (1995) and can be written in following 
form: 

b/y + a__D -- O'S OdD for Uy ~ UD, 

\CrA / 

\CrA/  Z " ( 1 )  

Here cr is an applied stress, uy is a crack-opening displacement, 
and a is a fiber radius, cra, ~rD, Crs are functions of fiber and 
matrix elastic moduli, fiber volume concentration, debonding 
toughness and sliding shear stress, respectively. 

This relation can be approximated by a step function. The 
value of a bridging force is taken to be 

r¢, for Uy ~ g0 
~rc = (2) 

for Uy -> u0 

where c is the fiber volume concentration and crf is the fiber 
strength. The critical crack-opening displacement Uo is determi- 
nated from ( 1 ) if crf is given. 

So, we get the following problem: straight crack of length 1 
in infinite orthotropic media, placed in-plane of orthotropia is 
externally loaded by constant stress cry. The constant compress- 
ing bridging forces Crc are applied near the crack tips. Let 0xy 
be a rectangular Cartesian coordinate system with x ,  y defining 
the axes of symmetry of an orthotropic solid. The crack is 
located along O x .  Hooke's law becomes 

~x = allOx + al2cry + al6Txy 

~y = al2cr x + a220y + a26Txy 

Txy = al6crx + a26cry + a66Txy. (3) 

The bridging forces, denoted by crc, are equal to cr,(x) = 
crcH(I x[ - 10), where the step-function H is zero for nonposi- 
tive values of its argument and lo is the length of unbridged 
part of the crack. 

This problem can be solved (Liebowitz, 1968) by use of the 
complex potentials. Let zj = x + s l y ,  z2 = X + s2y,  where s~ 
are purely imaginare roots of a characteristic equation 

a j j s  4 + (2a12 + a66)s  2 + a22 = 0, Im(s)  > 0. (4) 

The stress cry and crack-opening displacement Uy becomes 

cry = 2 Re(~b(zl) + g2(z2)), 

Uy = 2 Re(qrqS(z.) + q2qx(z2)) (5) 

where ~ and • are analytic functions of their arguments without 
cross-cut, 4 / ( z )  = qS(z), O ' ( z )  = ~ (z ) ,  

al2s} + a22 -- a26sl a12822 + a22 -- a26s2 
ql = , q2 = (6) 

Si $2 

The potentials ~ and • obtain the following forms: 

1 f "  V'r 2 - 12 
s 2 -  sl g , , (Z~) =--cry + • 2 2 J_ - - c r c ( r ) d r  

s2 2 2 7 r t ~ - 2 - I  5 t r - z~ 

sl - s2 "9(Z2) s2 - sl ~(Z2). (7) 
S1 $2 

By setting y = 0, x -> 0 we obtain 

sz - sl ~ l (x )  = - -  + - cr~ 2cr~ arccos 
s2 2 2 ~ 7r 

l 2 -- IoX 12 + loX 
Or,. a r c s i n - -  + a r c s i n - -  . (8) 
27r l ( lo - x )  l ( lo  + x )  ] 

The potential ~b can be obtained by the second integration: 

= - -  - ~r~ - - a r c c o s  
s2 2 2 rc 

/ 

cr---~- ( ( x  - 10) arcsin 
+ 2re \ 

12 -- lox 

l ( l o  - x )  

l 2 + lex ) (9) 
+ (x + 10) arcsin l ( lo  + x----------) " 

The potential must be produced into a half-plane x -> 0, (Re(z)  
-> 0). We denote by [4] the discontinuity of a function: 
[~b(x)] = 4 + ( z )  - 4~-(z), where an index " + "  or . . . . .  
symbolizes the top or bottom surface cracks, respectively. Then 

$2 -- $1 [qSl(X)]  { ( 0 " ~  2crc @)~/ = a r cco s  x 2 -- 12 
$2 71" 

cr~ } 
+ 27r ( ( x  - l o ) F ( x ,  lo) - ( x  + l o ) F ( x ,  - lo)) i .  (10) 

Function F is given by the form 

l 2 -- loX -- ~/(12 __ l~)(12 -- X 2) 
F ( x ,  1o) = In (11) 

1 2 -  lox + x/(l 2 -  l ~ ) ( 1 2 _ x  2) • 

By substituting (8) and (10) into (5) we then obtain the 
solution to the problem: 

cr,(x, 0) = crc + ~ c r ~ - - - r r  arccos 

l 2 -  lox 12 + l o x )  
cr"rr arcsin lUo Z T j  + arcsin l ( lo  + x - - - - - - )  

u y ( x , O )  = ~  c r ~ - - - a r c c o s  ~ - l  2 
7r 

crc 

~rE* 
( ( x  - l o ) F ( x ,  lo) + ( x  + l o ) F ( x ,  - lo)) 

Ixl < l .  (12) 
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In (12), E* is defined by 

1 = (13) 

l 
"W ~a, ,  2al, 

For a solid reinforced by laminae or fibers, 

E *  ~ c E ¢ +  (1 - c)Em.  (14) 

Near the crack tip the following asymptotic form is deduced: 

2fi ,/777 (cr7 Uy(~*, 0) ~ "~-  ql~* - - -  

where 

cry. A - ~  
+ - -  arcsin - - -  

7r A + ~  

+ crY (A - { * ) I n  ( ]~  - ,j~7)2 
~-e* (7~ + ¢~=): (15) 

A = I -  lo, x = 1 + ~ , x  = 1 -  ~*. 

It is suggested that A / l  ~ 1 and ~/1 ~ 1. As will be shown, 
these conditions are satisfied with sufficient accuracy in the 
problem under consideration. 

3 Fracture Criterion 
A cracks expansion may be represented as a step-wise pro- 

cess. When the average normal stress in the element between 
neighbor ligaments exceeds some limiting value (matrix 
strength), the matrix material will distract and the crack will 
move forward on the step. The stress field should be taken to 
be the corresponding to a homogeneous orthotropic solid. The 
fracture criterion takes the form 

cryd~ = or,,, (16) 

where D is the distance between neighbor fibers and cr,,, is the 
matrix strength. Set c~ = A / D  and insert the asymptotic form 
for Cry (15) into 16) we obtain 

24 

:18 

:t2 

6 

Fig, 2 
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The estimation of the full length of a crack 

2cr~  2 ~ l k = 2 ( ( r , , ,  1)  + 4 r-  
crc \ crc 71" 

+ ( 1  + c Q ( 1  --Tr2arcsinC~- 1)-c~71 . (17) 

The condition for the breaking of the fibers in the unbridged 
part of crack is that 

uy(A, o) = ~7 7 

To simplify the notation let us take 

lg 4 E*crcuo uo E *  U2 7c 13 . . . . .  ; = - - (19) 
7r cry2 ; / 3 = D  cr,, 4oe 

then (18) may be written as 

20- ~ 2~&= . ~ + 4  j ~  
7 7 

(20 )  

or  

2 & =  U + ~ .  

It is clear that lk > lg. 
Subtracting (20) from (17) we obtain 

(21) 

- ( ) + ~ / a ( l  + o l )  1 - 2 a r c s i n ~  1 . (22) 
7r c~T1 

Here/3 is an explicit function of the material parameters, i.e., 
it has prescribed value. Consequently, (22) is an algebraic equa- 
tion for o~. A numerical solution is shown in Fig. 2. 

If we consider the crack not only of critical length, but also 
of any one equilibrium, then the sign " = "  in Eq. (16) is re- 
placed by " -<"  and Eqs. (18), (20), (21) do not change. As 
a consequence, we obtain the following estimate of the crack 
length: 

l u <- l <- Ik (23) 

Values Ig and lk can be computed from the forms 
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= -ff~5-' Ix = Klk (24) 

4 
X = e  

4U 2 
K - ( 2 6 )  

(1 + U2) 2 ' 

In conclusion, the results of the calculation for two specific 
materials, namely silicon carbide fibers in calcium aluminosili- 
cate glass ceramic matrix and a silicon carbide fiber in a silicon 
carbide matrix, are given. Data for the material are presented 
in Table 1 (Budiansky et al., 1995). In Fig. 3 we have shown 
the factors k and K according to (26) as a function of fiber 
concentration. 
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Simultaneous Triangularization of 
the Coefficients of Linear Systems 

W. C. Lee 4'6 and F. Ma  5'6 

1 I n t r o d u c t i o n  

The coefficient matrices in the equation of motion of a linear 
nonconservative system may consist of arbitrary square matrices 
lacking any properties of symmetry and definiteness. An effi- 
cient way to analyze such a system is to reduce its coefficient 
matrices simultaneously to upper triangular forms. The purpose 
of this brief note is to present some criteria for simultaneous 
triangularization, and to expound a consequent procedure for 
constructing the triangularizing transformation. 

The equation of motion of an n-degree-of-freedom linear 
nonconservative system can be written as 

A~ + Bx  + C x  = g ( t ) ,  ( 1 )  

where A, B, and C are arbitrary square matrices of order n. 
These coefficient matrices need not possess any of the familiar 
properties of symmetry or definiteness. The displacement x(t) 
and external excitation g(t) are n-dimensional vectors. In tradi- 
tional applications, equations of the above type arise chiefly in 
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the area of vehicle dynamics. The use of control devices in 
structures in recent years, however, has permitted linear noncon- 
servative systems to manifest themselves on a widespread scale 
(Soong, 1990). In theory, it is always possible to investigate a 
linear nonconservative system with the state-space approach. 
Additionally, alternative methods have been proposed for the 
analysis of system ( l )  in its second-order formulation. These 
various approaches were recently discussed by Ma and Caughey 
(1995). It was pointed out that conversion of system (1) to 
first-order form could increase the computational effort and 
diminish the physical insight. On the other hand, methods appli- 
cable directly to system (1) could be rather restrictive. An 
efficient method for the analysis of system ( 1 ) involves simulta- 
neous reduction of A, B, and C to upper triangular matrices by 
a common similarity transformation. Necessary and sufficient 
conditions for the existence of a triangularizing transformation 
were presented by Caughey and Ma (1993) in the language 
of Lie algebra. Without disputing the relative merits of other 
techniques, the aim of this paper is to document additional 
criteria for simultaneous triangularization that are comprehensi- 
ble and practical. A procedure for constructing the triangulariz- 
ing transformation is also described. 

2 Q u a l i t a t i v e  C r i t e r i a  

A family of square matrices of order n constitutes a Lie 
algebra L if, for all P, Q in L, the commutator product [P, Q] 
= P Q  - Q P  also belongs to L. The notation L(P~ ,  P2 . . . . .  
PD is employed to denote the Lie algebra generated by the 
matrices P~, P2, • • •, P~. A Lie algebra L is associated with its 
derived sequence, defined inductively as follows: 

L (°~ = L, (2) 

LC"+l~= { [ S , T ] : S ,  T E L ( ' n } ,  n>--O. (3) 

A Lie algebra L is said to be solvable if there exists an integer 
m such that L °'~ = {0}. The class of solvable Lie algebra 
includes the class of pairwise commuting matrices, where L (~) 
= { 0 }. As explained by Caughey and Ma (1993), a necessary 
and sufficient condition under which the coefficient matrices A, 
B, and C can be reduced simultaneously to upper triangular 
forms is the following. 

Criter ion  1. The linear nonconservative system ( 1 ) is trian- 
gularizable if and only if the coefficient matrices A, B, and C 
generate a solvable Lie algebra. 

The above criterion involves computation of L ~''~, where m 
is not specified beforehand. To develop a mathematically equiv- 
alent criterion that is more specific, the concept of adjoint repre- 
sentation of a matrix is needed (Bauerle and de Kerf, 1990). 
In the space of square matrices of order n, a natural basis e,j 
(i, j = 1, 2 . . . . .  n) can be chosen such that each member eij 
is itself a square matrix of order n with 1 as the i j th  element 
and 0 elsewhere. Any square matrix A = [ao] of order n may 
be expanded in the natural basis in such a way that 

n n 

a = ~ Y, ai~eij. (4) 
i I j = l  

Let the double subscript of e 0 be rearranged sequentially so that 
el = e l l ,  e2 = el2,  • • • , en : el,t, en+i = e2i,  en+2 : e22, • . . , 
e,,+,, = e2,, . . . .  , en 2 : enn, The adjoint representation of a square 
matrix A of order n, denoted by adA ,  is a square matrix of 
order n 2 whosejth column may be computed from the sequence 
of commutator products 

tl 2 

[A,  ej] = A e ; -  ejA = ~ C j e i ,  j = 1 , 2  . . . . .  n 2. (5) 
i=l  

The ith element of the j th  column of adA ,  or its i j th  element, 
is simply given by Cj ( i , j  = 1, 2 . . . . .  n2) .  Algorithms for the 
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4 
X = e  

4U 2 
K - ( 2 6 )  

(1 + U2) 2 ' 

In conclusion, the results of the calculation for two specific 
materials, namely silicon carbide fibers in calcium aluminosili- 
cate glass ceramic matrix and a silicon carbide fiber in a silicon 
carbide matrix, are given. Data for the material are presented 
in Table 1 (Budiansky et al., 1995). In Fig. 3 we have shown 
the factors k and K according to (26) as a function of fiber 
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of this brief note is to present some criteria for simultaneous 
triangularization, and to expound a consequent procedure for 
constructing the triangularizing transformation. 

The equation of motion of an n-degree-of-freedom linear 
nonconservative system can be written as 

A~ + Bx  + C x  = g ( t ) ,  ( 1 )  
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the area of vehicle dynamics. The use of control devices in 
structures in recent years, however, has permitted linear noncon- 
servative systems to manifest themselves on a widespread scale 
(Soong, 1990). In theory, it is always possible to investigate a 
linear nonconservative system with the state-space approach. 
Additionally, alternative methods have been proposed for the 
analysis of system ( l )  in its second-order formulation. These 
various approaches were recently discussed by Ma and Caughey 
(1995). It was pointed out that conversion of system (1) to 
first-order form could increase the computational effort and 
diminish the physical insight. On the other hand, methods appli- 
cable directly to system (1) could be rather restrictive. An 
efficient method for the analysis of system ( 1 ) involves simulta- 
neous reduction of A, B, and C to upper triangular matrices by 
a common similarity transformation. Necessary and sufficient 
conditions for the existence of a triangularizing transformation 
were presented by Caughey and Ma (1993) in the language 
of Lie algebra. Without disputing the relative merits of other 
techniques, the aim of this paper is to document additional 
criteria for simultaneous triangularization that are comprehensi- 
ble and practical. A procedure for constructing the triangulariz- 
ing transformation is also described. 

2 Q u a l i t a t i v e  C r i t e r i a  

A family of square matrices of order n constitutes a Lie 
algebra L if, for all P, Q in L, the commutator product [P, Q] 
= P Q  - Q P  also belongs to L. The notation L(P~ ,  P2 . . . . .  
PD is employed to denote the Lie algebra generated by the 
matrices P~, P2, • • •, P~. A Lie algebra L is associated with its 
derived sequence, defined inductively as follows: 

L (°~ = L, (2) 

LC"+l~= { [ S , T ] : S ,  T E L ( ' n } ,  n>--O. (3) 

A Lie algebra L is said to be solvable if there exists an integer 
m such that L °'~ = {0}. The class of solvable Lie algebra 
includes the class of pairwise commuting matrices, where L (~) 
= { 0 }. As explained by Caughey and Ma (1993), a necessary 
and sufficient condition under which the coefficient matrices A, 
B, and C can be reduced simultaneously to upper triangular 
forms is the following. 

Criter ion  1. The linear nonconservative system ( 1 ) is trian- 
gularizable if and only if the coefficient matrices A, B, and C 
generate a solvable Lie algebra. 

The above criterion involves computation of L ~''~, where m 
is not specified beforehand. To develop a mathematically equiv- 
alent criterion that is more specific, the concept of adjoint repre- 
sentation of a matrix is needed (Bauerle and de Kerf, 1990). 
In the space of square matrices of order n, a natural basis e,j 
(i, j = 1, 2 . . . . .  n) can be chosen such that each member eij 
is itself a square matrix of order n with 1 as the i j th  element 
and 0 elsewhere. Any square matrix A = [ao] of order n may 
be expanded in the natural basis in such a way that 

n n 

a = ~ Y, ai~eij. (4) 
i I j = l  

Let the double subscript of e 0 be rearranged sequentially so that 
el = e l l ,  e2 = el2,  • • • , en : el,t, en+i = e2i,  en+2 : e22, • . . , 
e,,+,, = e2,, . . . .  , en 2 : enn, The adjoint representation of a square 
matrix A of order n, denoted by adA ,  is a square matrix of 
order n 2 whosejth column may be computed from the sequence 
of commutator products 

tl 2 

[A,  ej] = A e ; -  ejA = ~ C j e i ,  j = 1 , 2  . . . . .  n 2. (5) 
i=l  

The ith element of the j th  column of adA ,  or its i j th  element, 
is simply given by Cj ( i , j  = 1, 2 . . . . .  n2) .  Algorithms for the 
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computation of adA are available (Bauerle and de Kerf, 1990) 
but will not be addressed herein. A square matrix A is said to 
be nilpotent if A" = 0 for some r. If A is nilpotent, then ad A 
is also nilpotent but the reverse is not true. It is known that a 
Lie algebra L is solvable if and only if each element in L (~ has 
a nilpotent adjoint representation (Sagle and Walde, 1973). 
When this assertion is applied to system (1),  a necessary and 
sufficient condition for simultaneous triangularization of A, B, 
and C can be readily obtained. 

Criterion 2. The linear nonconservative system ( 1 ) is trian- 
gularizable if and only if each element in L~I~(A, B, C) has an 
adjoint representation that is nilpotent. 

The above criterion is more specific than Criterion 1 since 
examination of only L (~ is needed. On the other hand, Criterion 
2 requires calculation of the adjoint representations of matrices 
in L (~. An immediate corollary of the above criterion is that 
system ( 1 ) is triangularizable if each element in L(~(A, B, C) 
is a nilpotent matrix. However, this is only a sufficient and not 
a necessary condition. Sometimes it is useful to know when a 
system cannot be triangularized. It can be shown that if a Lie 
algebra L is solvable, then there exists a common eigenvector 
among all elements in L (Bauerle and de Kerf, 1990). That 
means if system ( 1 ) is triangularizable, there must be a common 
eigenvector among all elements in L(A,  B, C). An upshot at 
this stage is the following statement. 

Criterion 3. If there is not a common eigenvector among 
elements of the Lie algebra generated by the coefficient matrices 
A, B, and C, then the linear nonconservative system ( 1 ) is not 
triangularizable. 

It is now quite clear that only a small subclass of linear 
nonconservative systems can be triangularized. The above crite- 
rion will be used in the next section for constructing a triangu- 
larizing similarity transformation. 

Example  1. Consider a two-degree-of-freedom structure of 
the form (1) ,  with 

[ ;  0 ]  B =  [ ;  ~ ]  C =  [ - 5  7 ]  (6) 
A =  l ' ' - 3  5 " 

The Lie algebra and the derived sequence generated by A, B, 
and C are L(°~(A, B, C) = {0, A, B, C, nD, - n D  }, L(I)(A, 
B, C) = {0, riD, - n D }  (n = 3, 9, 12, 27, 36 . . . .  ) where the 
matrix D is given by 

D = 1 " (7) 

Adjoint representation of the matrix nD is 

ad n D =  n [:° 1 1il 1 - 2  0 
1 0 2 ' (8) 
0 - 1  - 1  

Since (ad nD) 3 = 0 for all n, each element of L(I)(A, B, 
C) has an adjoint representation that is nilpotent. Hence from 
Criterion 2 the structure is triangularizable. Define a coordinate 
transformation x = Tq, for which 

The transformed equation of motion becomes 

T-IAT~i + T-IBT~i + T-1CTq = T-~g(t)  

with coefficient matrices 

(10) 

BRIEF NOTES 

I, 011 0] 0 ' T-1BT = 

According to Criterion 3, there exists a common eigenvector 
among A, B, C, nD, and - n D  (n = 3, 9, 12, 27, 36 . . . .  ). 
After calculating and comparing the eigenvectors of B and C, 
it is observed that [1, 1] r is a common eigenvector among 
matrices in L~°)(A, B, C). 

3 Cons truc t ion  of  T r i a n g u l a r i z i n g  T r a n s f o r m a t i o n  

Based upon Criterion 3, a procedure for determining a trian- 
gularizing similarity transformation for system (1) will be 
given. The procedure itself may be regarded as a constructive 
criterion for assessing triangularizability, since the procedure 
cannot be carried through unless the coefficient matrices are 
simultaneously reducible to upper triangular forms. The abstract 
theory associated with this method is described by Sagle and 
Walde (1973). 

In exposition of this method, it is convenient to start by 
assuming that the coefficient matrices A, B, and C of system 
(1) are simultaneously triangularizable and nonsingular. Since 
L(A,  B, C) contains the coefficient matrices themselves, by 
Criterion 3 there exists a common eigenvector among A, B, 
and C. Denote this common eigenvector of order n by u~. 
Choose linearly independent vectors fi~, f~ . . . . .  f,J, so that 
together with Ul they constitute a basis of the n-dimensional 
space. For each f )  ( j  = 2, 3 . . . . .  n) ,  unique scalars a~, b~, 
c~ (i,  j = 1, 2 . . . . .  n)  can be determined so that 

n n 

Aft) = a]ju, + ~,~ a~f: ,  Bfi) : bl:ul + • bbfi:, 
i - 2  i = 2  

co) = clju, + ~ c ~ .  (12) 
i = 2  

Define three matrices of order n - 1 by A~ = [a~], B1 = 
[b~] and Ct = [c~] (i ,  j = 2, 3 . . . . .  n) .  From Criterion 3, it 
can be deduced that there is a common eigenvector among 
A~, Bi and C~ (Sagle and Walde, 1973). Denote this common 
eigenvector of order n - 1 by u* .  Transform u*  into a vector 
u2 of order n by u2 = Dlu~,  where Di = [i l l ,  fi~ . . . . .  fi,~] is 
an n × (n - 1) matrix consisting of the vectors fi) ( j  = 2, 3, 
. . . .  n)  as columns. 

With u~ and u2 specified, one then proceeds to choose linearly 
independent vectors fi~, f ]  . . . . .  fiE SO that together with u~ 
and u2 they constitute a basis of the n-dimensional space. For 
each fi~ ( j  = 3, 4 . . . . .  n), unique scalars a~, b~, c~ ( i , j  = 
1, 2 . . . . .  n)  can be found such that 

u 

A ~  = a~ju~ + a~j,~ + 2; a,~n~, 
i = 3  

n 

, a~  = b~u, + b~u~ + Z b~ju,~. 
i = 3  

n 

ca~ = c~ju, + ~ u ~  + Z ~ou,~. (13) 
i=3 

Define three matrices of order n - 2 by A~ = JAR], B2 = 
[b~] and C2 = [c~] (i ,  j = 3, 4 . . . . .  n) .  It can be deduced 
that there is a common eigenvector among A2, B2, and C2. 
Denote this common eigenvector of order n - 2 by u3*. Trans- 
form u ]  into a vector u3 of order n by u3 = D2a] ,  where D2 
= [fi2, fi] . . . . .  fi~] is an n × (n - 2) matrix. Thus m,  U 2 ,  

and u3 are now specified. Inductively, one can compute the 
remaining vectors u4, u5 . . . . .  u, in an analogous fashion, The 
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matrix T = [ U l ,  u 2 . . . . .  Un] defines a similarity transformation 
such that T-~AT, T-IBT and T-aCT are upper triangular. The 
overall procedure for determining the triangularizing transfor- 
mation T amounts to constructing its columns sequentially. An 
algorithmic approach to this procedure was discussed by Lee 
(1995). 

Upon reduction of its coefficient matrices to upper triangular 
forms, system ( 1 ) may be solved by the method of back-substi- 
tution. Solving a triangularized system by back-substitution may 
be looked upon as solving n uncoupled equations with addi- 
tional nonhomogeneous terms which originate from the off- 
diagonal elements of the tfiangularized coefficient matrices. 
These extra nonhomogeneous terms can be treated physically 
as internal excitation, as opposed to the external excitation g(t).  
Concepts of this type may be useful in an attempt to formulate 
a theory of coupling for linear nonconservative systems (Lee, 
1995). Among other things, simultaneous reduction of A, B, 
and C to triangular forms is certainly more general than simulta- 
neous reduction of the same coefficient matrices to diagonal 
forms. Compared to direct numerical integration of system ( 1 ), 
simultaneous triangularization offers the possibility of generat- 
ing analytical solutions. 

Example 2. A linear nonconservative system of the form 
(1) is  defined by 

F2.750 1.750 -1.750 1.375 7 
/5.400 5.000 -5.400 6.10o[ 

A = /4.150 1.750 -3.150 7.975 / 
L3.600 0.000 -3.600 8.400J 

r2.500 2.500 -0.500 0.250- 
[6.600 5.000 -6.600 5.900 

B = [4.100 2.500 -2.100 4.150 
L6.400 0.000 -6.400 10.600 

4.100 1.500 -1.100 0.150" 
[ 2.900 7.500 -2.900 0.850 

C = [ -0 .350 2.250 3.350 -1.275 
L-2.300 0.500 2.300 0.050 

(14) 

(15) 

(16) 

It can be seen that ul = [1, 0, 1, 0] r is a common eigenvector 
among A, B, and C. Choose linearly independent vectors ~ = 
[0, 1, 0, 1] r, fi~ = [l, 1, 0, 0] r, fi~ = [1, 0, 0, 0] r so that ut, 
~ ,  fi3 ~ and ~4 ~ constitute a basis. Upon calculating A1, Bi, and 
G ,  it is found that a common eigenvector among them is u2* 
= [-0.667, 0, 1] r. Define a 4 × 3 matrix Di = [Q~, ~ ,  fi~]. 
Transform u~ into a vector u2 by u2 = D2u2* = [1, -0.667, 0, 
-0.667] r. In a similar fashion, u3 = [0, 1, 0, 0] r and u4 = [2, 
0, 0, 0] r can be determined. The transformation matrix is T 
= [u~, u2, u3, u4]. Upon triangularization of the system, the 
coefficient matrices become 

I I.O00 -2.333 1.750 8.300"] 
0.000 3.000 0.000 -10.800 / 

T-1AT= 0.000 0.000 5.000 3.600[ ' (17) 
0.000 0.000 0.000 4.000 3 

I 
2.000 -0.333 2.500 8.200 7 
0.000 1.000 0.000 -19.200 / 

T-~BT= 0.000 0.000 5.000 0.400/ , (18) 
o.ooo o.ooo o.ooo 8 .oooj  

F 3.000 -1.000 2.250 -0.700"~ 
[ 0.000 4.000 -0.750 6.900[ 

T-ICT= ]0.000 0.000 7.000 10.400 / . (19) 
k o.ooo o.ooo o.ooo 1.ooo j 

4 Conclusions 
Criteria for simultaneous reduction of the coefficient matrices 

of a linear nonconservative system to upper triangular forms 
have been presented. The coefficient matrices A, B, and C are 

simultaneously triangularizable if and only if L(A, B, C) is 
solvable. Equivalently, these coefficient matrices are simultane- 
ously reducible if and only if each element in L~l)(A, B, C) 
has an adjoint representation that is nilpotent. A sufficient condi- 
tion for simultaneous triangularization is that each element in 
L~I~(A, B, C) be a nilpotent matrix. On the other hand, if there 
is not a common eigenvector among elements in L(A, B, C), 
then system (1) is not triangularizable. The last criterion has 
been employed in the construction of a triangularizing transfor- 
mation. Simultaneous reduction of A, B, and C to triangular 
forms is more general than simultaneous reduction of the same 
coefficient matrices to diagonal forms. Compared to direct nu- 
merical integration of system (1), simultaneous triangulariza- 
tion offers the possibility of generating analytical solutions. 
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1 Introduction 
The problem of the stress field around two circular inclusions 

in an infinity medium under remote uniform, longitudinal shear 
has recently been investigated by Honein et al. (1992). Numeri- 
cal results for stresses around two circular holes, and around 
two circular inclusions disturbing the uniform remote shear have 
been given. A similar problem was solved earlier by Goree 
and Wilson (1967), Budiansky and Carrier (1984), and Steif 
(1989). 

As is well known, the antiplane shear problem in elastostatics 
can be reduced to the solution of Laplace equation in terms of 
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matrix T = [ U l ,  u 2 . . . . .  Un] defines a similarity transformation 
such that T-~AT, T-IBT and T-aCT are upper triangular. The 
overall procedure for determining the triangularizing transfor- 
mation T amounts to constructing its columns sequentially. An 
algorithmic approach to this procedure was discussed by Lee 
(1995). 

Upon reduction of its coefficient matrices to upper triangular 
forms, system ( 1 ) may be solved by the method of back-substi- 
tution. Solving a triangularized system by back-substitution may 
be looked upon as solving n uncoupled equations with addi- 
tional nonhomogeneous terms which originate from the off- 
diagonal elements of the tfiangularized coefficient matrices. 
These extra nonhomogeneous terms can be treated physically 
as internal excitation, as opposed to the external excitation g(t).  
Concepts of this type may be useful in an attempt to formulate 
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1995). Among other things, simultaneous reduction of A, B, 
and C to triangular forms is certainly more general than simulta- 
neous reduction of the same coefficient matrices to diagonal 
forms. Compared to direct numerical integration of system ( 1 ), 
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It can be seen that ul = [1, 0, 1, 0] r is a common eigenvector 
among A, B, and C. Choose linearly independent vectors ~ = 
[0, 1, 0, 1] r, fi~ = [l, 1, 0, 0] r, fi~ = [1, 0, 0, 0] r so that ut, 
~ ,  fi3 ~ and ~4 ~ constitute a basis. Upon calculating A1, Bi, and 
G ,  it is found that a common eigenvector among them is u2* 
= [-0.667, 0, 1] r. Define a 4 × 3 matrix Di = [Q~, ~ ,  fi~]. 
Transform u~ into a vector u2 by u2 = D2u2* = [1, -0.667, 0, 
-0.667] r. In a similar fashion, u3 = [0, 1, 0, 0] r and u4 = [2, 
0, 0, 0] r can be determined. The transformation matrix is T 
= [u~, u2, u3, u4]. Upon triangularization of the system, the 
coefficient matrices become 

I I.O00 -2.333 1.750 8.300"] 
0.000 3.000 0.000 -10.800 / 

T-1AT= 0.000 0.000 5.000 3.600[ ' (17) 
0.000 0.000 0.000 4.000 3 
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2.000 -0.333 2.500 8.200 7 
0.000 1.000 0.000 -19.200 / 

T-~BT= 0.000 0.000 5.000 0.400/ , (18) 
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F 3.000 -1.000 2.250 -0.700"~ 
[ 0.000 4.000 -0.750 6.900[ 

T-ICT= ]0.000 0.000 7.000 10.400 / . (19) 
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4 Conclusions 
Criteria for simultaneous reduction of the coefficient matrices 

of a linear nonconservative system to upper triangular forms 
have been presented. The coefficient matrices A, B, and C are 

simultaneously triangularizable if and only if L(A, B, C) is 
solvable. Equivalently, these coefficient matrices are simultane- 
ously reducible if and only if each element in L~l)(A, B, C) 
has an adjoint representation that is nilpotent. A sufficient condi- 
tion for simultaneous triangularization is that each element in 
L~I~(A, B, C) be a nilpotent matrix. On the other hand, if there 
is not a common eigenvector among elements in L(A, B, C), 
then system (1) is not triangularizable. The last criterion has 
been employed in the construction of a triangularizing transfor- 
mation. Simultaneous reduction of A, B, and C to triangular 
forms is more general than simultaneous reduction of the same 
coefficient matrices to diagonal forms. Compared to direct nu- 
merical integration of system (1), simultaneous triangulariza- 
tion offers the possibility of generating analytical solutions. 
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Fig, 1 Infinite plane D exterior to n holes 
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the transverse displacement. It can thus be solved by using the 
complex variable boundary element method (CVBEM), which 
was developed extensively by Hromadka and Lai (1986), and 
is shown to be an effective numerical method for the solution 
of potential problems. It is particularly suitable for the solution 
of problems involving an infinite region, such as the one to be 
considered here. 

In most problems, the stress field is of interest and is deter- 
mined by numerical differentiation using the boundary values 
of displacement found. This usually yields less accurate results. 
As shown by Hromadka and Yen (1988), one natural remedy 
to this problem is to use higher order interpolation function 
for the element, which, however, requires more analytical and 
numerical work. In this paper, it is shown that the antiplane 
shear problem of an infinite medium with holes can be formu- 
lated in terms of the derivatives of displacement, and thus, the 
stresses on the boundaries found directly without recourse to 
numerical differentiation. In the same line of thought, Choi and 
Kwak (1989) considered the formation of a boundary integral 
equation in terms of unknown derivatives by integration by parts 
of the Cauchy integral; however, their method is substantially 
different from what is to be presented here. 

As numerical examples, the problems of two holes considered 
by Honein et al. (1992) are solved using the present method. 

2 Formulation of the Problem 
The antiplane deformation is defined by the displacement 

field 

BRIEF NOTES 

ul = u 2 = 0 ;  u ~ u 3 = u ~ ( x ~ , x 2 ) ,  (1) 

with a nonvanishing stress field given by 

Ou Ou 
0.13 = O'31 = / "~ O X  1 O"23 = 0"32 = ~ 0 X  2 (2) 

where ~ is the shear modulus. The problem is thus two-dimen- 
sional, and u(x~, x2) satisfies the Laplace equation. 

Consider the problem of an infinite medium f~ exterior to n 
traction-free circular holes bounded by contours Lk, k = 1, 2, 
. . . .  n, Fig. 1. At infinity, the medium is under uniform shear 
O'~°2 --~ '7"; 0.~1 "~ 0, or equivalently under the displacement u = = 
7"x2/#2 + c, where c denotes rigid-body displacement. Let the 
stress field a;2 and 0.;i in the medium be given as 

cr;j = a~l + a31, 0.;2 = 0.~2 + a32, (3)  

and the displacement u '  as 

u '  = u ~ + u, (4) 

where 0"31,0"3:, and u are quantities due to the presence of holes. 
The problem becames the solution of the following problem: 

V2u = 0 in ~2, 

Ou T 
. . . .  n20nLk, U ~ 0 a s x ~ + x ~ o o .  (5)  
On t.z 

Here n = (nl,  n2) is the outward unit vector on the hole con- 
tours. 

Let 

0u 0u 
qb = Ox---~' ~b = Ox--~' (6)  

It is easily shown that the problem (5) is reduced to the follow- 
ing equivalent problem: 

V2~b=O; V2C,=Oin  

n,~ + n24, ~" = - - - o n L k ; 6 , ~ O a s x ~  + x ~ ,  (7) 
# 

with the conditions of single-valueness of displacement given 
by 

fL (l~tdXl + 6dx2) = O, = 1, . . . . .  n. (8) k 2 
k 

The functions ~b, ~b are harmonic and can be shown to be 
conjugate of each other. They are the real and imaginary parts 

x2 

f 
Fig. 2 Schematic representation of nodes for two circular holes 

=xl 
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O'ox~l~" around hole with radius a~ versus 0 for g i s t  = 2 

of an analytic function co(z) = ~ + iO of a complex variable 
z = x~ + ix:. It is well known that a function harmonic in a 
multiply connected region does not necessarily possess a single- 
valued conjugate function; however, it is shown in Henrici 
(1986) that Eqs. (8)  are the necessary and sufficient conditions 
that such a function exits. 

For w ( z )  analytic in ~ including the point at infinity and 
continuous in f2 + L, the Cauchy integral formula states that 

f ,  ~'(~) ~(Z) - or(w) = 27r--i _ .  ~ - z d~,  z ~ ~.  (9)  

Here L = L~ + L~ + . . . .  + L,,  with the positive direction of 
L chosen in such way that f2 lies to the left, and w(w) = 0 for 
the problem under consideration. 

d/a~ = 0.1 

5 

4 .! 
°i b 

- 3  I I I I I I 

0 1 2 x 4 5 

O in r a d i a n s  

Fig .  4 
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~r0~/~" around hole with radius a~ versus 0 for dla~ = 0.01 

The boundary values of q5 and ~b, and hence the stresses, 
around the holes can thus be found by using the CVBEM. Each 
contour Lk is subdivided into mk elements F~j,  and the analytic 
function w ( z )  is approximated by the interpolating function 
a k j ( z )  on each element Fkj.  Equation (9)  then gives the approx- 
imate function &(z)  of ~v(z) as follows: 

1 " "'~ f cr~,j(~) ~(~) : ~ E ~,Z aF - ( - -z  d~, z ~ ~. (10) 
k =  1 "=  k d  

Let z E [2 approach a nodal point zk.j of all contours Lk. 
Equating the real and imaginary parts of both sides of (10)  
yields 

{@} = CR{~} + Dn{~"},  (11) 

{ ~ }  = C,{,~,} + D ,{~ ,} .  (12)  

Here Cn, C .  DR, and D~ are matrices whose values depend 
on)y on the configuration of the contours; {& }, { if5 } and 
{,~ }, { ~  } are vectors whose elements are, respectively, the 
approximate nodal values 05,j, ~k.j and the specified nodal val- 
ues ~k.j, ~}k.j of ~b and ~p. 

In most engineering problems, either { ~ } or { ~ }, but not 
both, is given on the contours. If, for example, { • } is given 
on the contours, there exist two methods for estimating { • } : 
collocate implicitly the unknown nodal values by setting { ~, } 
= { ,~ } in ( 11 ) and solve for { ~  } ; collocate explicitly the 
known nodal values by setting { • } = { ~, } in (12)  and solve 
for {@ }. Hromadka and Lai (1986) show that the implicit 
collocation can give more accurate results and is preferred. 

3 Numerical  Procedure and E x a m p l e s  

The contours Lk is subdivided into nnk elements, and the matri- 
ces CR, C~, DR, and Di are generated. For the problem (7) ,  
and ~p are related on a contour L~, and, consequently, either one 
can be chosen as unknown. At a nodal point zk,y with outward 
unit normal n = (n~, n2), for n~ ~ 0, 

and the j t h  equation in ( l 1 ) is chosen for implicit  collocation 
with ~ j  as unknown; while, for n~ = O, 
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~k.p = -- ~- , (14) 
#n2 

which is known, and the pth equation in (12) is selected for 
implicit collocation with q'k.p the unknown. In this way, a set 
of algebraic equations is composed from (11) and (12) with 
the form 

{X} = A"{X} + B"{Y}.  (15) 

Here {J~} consists of unknown values ~k,j or ~k,j; {X} with 
elements ~)k.j or ~Jk4; and { ~" } contains all the known values. 
Letting { X } = { X } -=- { X } in ( 15 ), a set of algebraic equations 

A I X }  = {b} (16) 

is obtained. 
The Eq. (16) is solved, subjected to the conditions of single- 

valueness of displacement (8) : 

where C has the form 

C r l X }  = {d} (17) 

I t  I 01 ,.. 01] 
C : 0 2  c2 "" 02 ( 1 8 )  • .. : ' 

n O n  ' ' ' Cn 

with Ck a vector of order ink; 0k a null vector of order m~. 
Imposing condition (17) on Eq. (16) using the Lagrange multi- 
plier h = { kl, X2 . . . . .  k,, } r yields 

ICAr 0 C ] { ~ }  = { ~ } .  (19) 

Here 0 is a null matrix of order n × n. Equation (19) is a set 
of algebraic equations which can be solved using any standard 
numerical package. 

Although the numerical procedure presented can be applied 
to the solution of a stress field around any number of holes of 
different configuration, the problem of two circular holes whose 
centers lie on the x~-axis considered by Honein et al. (1992) 
is solved as examples. 

The contours of each hole are subdivided into 36 elements 
with elements much finer near the point (a~, 0) and the direct 
opposite point (a~ + d, 0) which are known to be the singular 
points, Fig. 2. Numerical results for crox3/r around the hole with 
radius al for a2/at = 2 are superimposed on the results of 
Honein et al. (1992) using the solid dots: d/an = 2 in Fig. 3; 
d/a~ = 0.1 in Fig. 4; d/al = 0.01 in Fig. 5. The numerical 
results compare well with the analytical results, except at the 
point (a,, 0) for cases d/a, = 0.1 and dial = 0.01, where 
the results obtained have an error of about 4.5 percent and 11 
percent, respectively. The larger error at the point (a~, 0) as 
d/al ~ 0 is to be expected, since it is harder and harder to attain 
numerical accuracy as the two holes approach each other. 
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On Pala's  Method  for Plastic  
Bending  With  Tors ion  

P. Oberweis 8 and M. Zyczkowski 9 

Handelman (1944) and Hill (1948) considered the general 
case of longitudinal homogeneity of the perfectly plastic stress 
state in a prismatic bar. It corresponds to simultaneous biaxial 
bending, tension, and torsion. In the above papers the Prandtl 
stress function was employed, whereas the relevant equation in 
terms of displacements was derived by Piechnik (1961) and 
Piechnik and 2;yczkowski (1961). Advantages of numerical 
integration of Piechnik's equation were pointed out by Miller 
and Malvern (1967). 

In the simpler case of uniaxial bending with torsion of a 
prismatic bar with bisymmetric cross section, the Handelman- 
Hill equation may be reduced to 

o~ l y l ~  1 kOx/ \Ty] ] J 

( E ]_,,2) 0 0.  ( o . ? _  2 + A = 0  
+ ~ y  lYl 03--- ~ 1 - \ O x J  \ O y J  

(1) 

where A = (2/x/3)(b/l~ [); 0 and b denote rate of twist and 
rate of curvature, respectively; x and y are measured along the 
symmetry axes of the cross section; and z is measured along 
the axis of the bar. Further, u is the Prandtl stress function, 
defined by 

- k  Ou Ou , = k -  ; ( 2 )  

the normal stress is then given by 

(0.?_ (0.? 
ors = +_k ~[3 1 - \ Ox J \ Oy J ' (3) 

obtained from the Huber-Mises-Hencky yield condition, and k 
denotes the yield-point stress in simple shear. Equation (1) 
holds also for monosymmetric sections with x being the axis 
of symmetry bent in the plane yz ; otherwise shifting of the axis 
of discontinuity along y would take place, and this is not indi- 
cated in (1).  Hill (1948) derived his equation for the general 
case of shifting and rotation of the neutral axis turning in the 
limit state into the discontinuity axis, but this case will not be 
considered here. Notation of the present paper follows that used 
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BRIEF NOTES 

by Pala (1994) with some small changes, namely with the 
introduction of absolute values in ( 1 ) and in the definition of 
A, which is necessary for the correct description of the problem. 

Equation ( 1 ) is an elliptic nonlinear partial differential equa- 
tion with the boundary condition u = 0 along the contour of a 
simply connected cross section. Many numerical solutions of 
this equation were reviewed by Zyczkowski (1981) and Pala 
(1994), but it is difficult to find an analytical solution. Probably 
the only one known as yet is 

u = C I h - y l ,  ~-xz = - C  sign y, cry= + k ' ~ / 1 -  C 2. (4) 

Indeed, substituting into (1) we obtain 

- C  sign y(1 - C 2 )  - 1 / 2  - ~ - A  = 0, (5) 

hence 

A 2b 
- -  - + ( 6 )  C = -+~/1 + A 2 - ( 3 0 2  + 402,  

and the boundary condition is satisfied for a strip (very long 
rectangle) - h  -< y -< h bent in the plane at its smaller stiffness. 
The above solution was derived earlier by some other way: by 
Rzhanitsyn (1949) directly from basic equations of plasticity, 
and by 7.yczkowski ( 1981 ) from the general displacement equa- 
tion. 

In order to find other analytical solutions, Pala (1994) pro- 
posed to introduce an auxiliary function 4, defined by the follow- 
ing transformation: 

84, - -  ~ 2 2 - I / 2  

O X  yu,( 1 - -  bl  x - -  L l y  ) , 

04, (7) 
- -  ~ 2 2 - 1 / 2  Oy yUy( l -- Ux -- Uy ) , 

(with a shorter notation for partial derivatives), obtaining for 
4, the equation 

024, + a2-__~_ 
Ox---- ~ 0y 2 + A = 0, (8) 

for which many analytical solutions are known. 
Pala's idea is unquestionably too optimistic. One cannot ex- 

pect a complicated nonlinear partial differential equation to be 
replaced exactly and in a general manner by a linear one. The 
author defines 4, by its partial derivatives (7) without checking 
the Schwarz condition. Since, in general, formulae (7) will not 
satisfy this condition, namely 

04,x/ Oy -~ O4,,/ Ox, (9) 

the function 4, may not exist at all: for various integration paths 
one would obtain various values of 4, at the same point x, y. 
And, vice versa, if a function 4, is constructed, then the relevant 
stress function u should be found from two differential formulae 
(6) in Pala's paper; generally, they also will not satisfy the 
Schwarz condition and the function u will not exist. Hence, in 
general, the method proposed is not correct, as pointed out by 
Shield (1995). 

However, there may exist some exceptional cases in which 
the Pala method can successfnlly be used. Consider the example 
of a bar with elliptical cross section mentioned in his paper. 
The function 4, for such a section is given by the author but 
with a mistake. Having corrected this mistake to satisfy the 
boundary condition we obtain 

A l- a 2 b 2 q 
- -  2 4, = 7 /57-7-;-5" (x - y2) _ (x 2 + y2) , (10) J k a  -~ o 

(numerator and denominator of the first term are interchanged). 
Formulae (7) give here 

M t 

Fig. 1 Stress function for the particular case of an elliptical section 

- A b 2 x  
ux = ~/AZb4x2 + [A2a 4 + (a 2 .+ b2)2]Y 2 , 

- A a  2y 
Uy = ~/A2b4x2 + [A2a 4 + ( a2 + b2)Z]Y 2 , (11) 

and the Schwarz condition leads to the equation 

A 2a4 + (a 2 + b2) 2 = A2a2b 2. (12) 

Hence, if the semi-axis b is larger than the semi-axis a (ellipse 
subject to bending in the plane of larger moment of inertia), 
we obtain 

a 2 + b 2 
A = + a ~ -  a 2 (13) 

In this very particular case Pala's solution is correct. Integrating 
either of Eqs. (7) we obtain the same result for the stress func- 
tion, satisfying the boundary condition u = 0 along the contour, 

u = a 1 - + . (14) 

Indeed, the Handelman-Hill equation is then satisfied. In the 
case under consideration, ((13)  and (14)) ,  we have 

[1 (0.?_ 
- \ ~ x /  \Oy / J 

= ( a 2 +  b 2 ) l y l / ( A a b  2 X~ar~ + ~Y2) , (15) 

and (7) is satisfied both for positive and negative y. Pure bend- 
ing of this elliptic section corresponds to a discontinuity line 
along y = 0, whereas pure torsion, along x = 0 (both these 
special, but well-known cases are outside the scope of the pres- 
ent solution). In the combined case under consideration these 
discontinuity lines have shrunk just to one point x = y = 0 
(Fig. 1). Of course, this solution does not allow to construct a 
plastic interaction curve, since for each ellipse we have just one 
point of such a curve, given by (13),  and the relevant expres- 
sions for bending moment and torque. 

In general, Pala's method is not correct. For example, as 
mentioned above, it does not correctly describe pure torsion of 
an elliptical bar, considered by Zyczkowski (1964),  since (13) 
is not satisfied for this case. Also, other classical solutions of 
the problem of elastic torsion (isosceles triangle, circle with 
circular incision) do not satisfy the Schwarz conditions for the 
auxiliary function 4,, hence the solution (14) is probably the 
only one to be obtained by Pala's method. 

In other cases Pala's method may be considered as approxi- 
mate, but it would be difficult to estimate the approximation 
errors: for a given shape of the cross section the solution of Eq. 
(8) is unique, hut the construction of the relevant Prandtl 's 
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stress function u depends on the path of integration of the differ- 
ential formulae resulting from (7).  Both bending and twisting 
moments depend on u and hence the errors depend on the quite 
arbitrary choice of integration path. 
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Elastic Tensile Stresses Beneath 
Perfectly Plastic Indentation Fields 

D. M. S tump ~0,12 and V. G. Hart"'tz 

1 Introduction 

The stress field beneath an indenter is very complex. Far from 
the indenter, the field is elastic and compressive by equilibrium 
requirements. The field is also compressive directly under the 
indenter and, if the load is large enough, the material can deform 
plastically. If the material under the indenter is perfectly plastic, 
then an elastic transition region surrounds this plastic zone. The 
stresses within this transition zone are complicated and may 
even be tensile rather than compressive. This note considers the 
elastic stresses in the transition region surrounding a perfectly 
plastic indenter field. 

Sneddon (1951) has studied the elastic stresses occurring 
under a strip length 2a of uniform pressure Po applied to a half- 
plane. A compressive stress parallel to the free surface occurs 
everywhere in the half-space below the strip. This note deter- 
mines the stresses in the elastic transition regions beneath trun- 
cated-wedge plastic indentation fields (Hill, 1950), and there 
is an interesting contrast with the purely elastic case. 
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X,X ~n 

Fig. 1 Schematic drawing of the slip-line field for the truncated wedge 

2 The Plastic Field 
The plastic held geometry of the truncated wedge (Hill, 1950, 

p. 255) is shown in Fig. 1. The Prandtl held is folded through 
an additional angle y so that the total opening half-angle of the 
wedge is 0o = 7r/2 + % Let 2a be the length of the uniform 
strip of pressure with the resultant downward force P. The yield 
strength in shear is k, The field consists of constant stress re- 
gions I and III combined with centered fans II, where the polar 
angle tp is measured from the corner of the strip, as shown in 
Fig. I. The mean normal stress in the three regions is given by 

p = - k  (Region I), 

P = - k (  1 - ~ + 2 y - - 2  2~b) (Region l I ) ,  (1) 

p = - k ( l  + 7r + 2y)  (Region III). 

The load on the indenter (Hill, 1950, p. 255) is 

P = 2ak(2 + ~- + 230. (2) 

For the purpose of this approximate analysis, the boundary to 
the plastic region is shown in Fig. 1, even though, as Hill (1950) 
points out, this is not necessarily the physical boundary which 
would develop under a monotonically increasing indenter load. 
The normal ~,,,, and shear a,,, tractions exerted by the plastic 
region on the elastic region exterior to Region I are 

a,,,, = or,,, = - k .  (3) 

Region II exerts the tractions 

2 (4) 

~r,, = - k .  

3 The Elastic Region 
The forces in the truncated wedge can be approximated by 

using the eigenvalue series as described by Buchwald (1965) in 
terms of complex stress potentials f~(z) and w(z). The complex 
variable z = 2/a + iy/a is measured from the "vertex" center 
O on Fig. 1. The series solutions are 

N 

~( z )=Ao log ( z )+  ~c,,z-~,~+ ~ [c,,z-~,~+C,,z-~,,] (5) 
n = I n ~ N +  1 

and 
N 

w(z) = -Ao  log (z) + ~ c,,d,,z -t~,' 
n 1 

+ ~ [c,,d,,z -& + ~,,dZ,z L,]. (6) 
n-N+ 1 

Here A0 = -P/[40o + 2 sin (20o)] is a constant determined by 
the resultant load P (Timoshenko and Goodier, 1970). The first 
sum in each expression is carried out over the N positive real 
eigenvalues (3~,/3z . . . . .  /3N) that are solutions to the equation 
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stress function u depends on the path of integration of the differ- 
ential formulae resulting from (7).  Both bending and twisting 
moments depend on u and hence the errors depend on the quite 
arbitrary choice of integration path. 
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the indenter, the field is elastic and compressive by equilibrium 
requirements. The field is also compressive directly under the 
indenter and, if the load is large enough, the material can deform 
plastically. If the material under the indenter is perfectly plastic, 
then an elastic transition region surrounds this plastic zone. The 
stresses within this transition zone are complicated and may 
even be tensile rather than compressive. This note considers the 
elastic stresses in the transition region surrounding a perfectly 
plastic indenter field. 

Sneddon (1951) has studied the elastic stresses occurring 
under a strip length 2a of uniform pressure Po applied to a half- 
plane. A compressive stress parallel to the free surface occurs 
everywhere in the half-space below the strip. This note deter- 
mines the stresses in the elastic transition regions beneath trun- 
cated-wedge plastic indentation fields (Hill, 1950), and there 
is an interesting contrast with the purely elastic case. 
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Fig. 1 Schematic drawing of the slip-line field for the truncated wedge 

2 The Plastic Field 
The plastic held geometry of the truncated wedge (Hill, 1950, 

p. 255) is shown in Fig. 1. The Prandtl held is folded through 
an additional angle y so that the total opening half-angle of the 
wedge is 0o = 7r/2 + % Let 2a be the length of the uniform 
strip of pressure with the resultant downward force P. The yield 
strength in shear is k, The field consists of constant stress re- 
gions I and III combined with centered fans II, where the polar 
angle tp is measured from the corner of the strip, as shown in 
Fig. I. The mean normal stress in the three regions is given by 

p = - k  (Region I), 

P = - k (  1 - ~ + 2 y - - 2  2~b) (Region l I ) ,  (1) 

p = - k ( l  + 7r + 2y)  (Region III). 

The load on the indenter (Hill, 1950, p. 255) is 

P = 2ak(2 + ~- + 230. (2) 

For the purpose of this approximate analysis, the boundary to 
the plastic region is shown in Fig. 1, even though, as Hill (1950) 
points out, this is not necessarily the physical boundary which 
would develop under a monotonically increasing indenter load. 
The normal ~,,,, and shear a,,, tractions exerted by the plastic 
region on the elastic region exterior to Region I are 

a,,,, = or,,, = - k .  (3) 

Region II exerts the tractions 

2 (4) 

~r,, = - k .  

3 The Elastic Region 
The forces in the truncated wedge can be approximated by 

using the eigenvalue series as described by Buchwald (1965) in 
terms of complex stress potentials f~(z) and w(z). The complex 
variable z = 2/a + iy/a is measured from the "vertex" center 
O on Fig. 1. The series solutions are 

N 

~( z )=Ao log ( z )+  ~c,,z-~,~+ ~ [c,,z-~,~+C,,z-~,,] (5) 
n = I n ~ N +  1 

and 
N 

w(z) = -Ao  log (z) + ~ c,,d,,z -t~,' 
n 1 

+ ~ [c,,d,,z -& + ~,,dZ,z L,]. (6) 
n-N+ 1 

Here A0 = -P/[40o + 2 sin (20o)] is a constant determined by 
the resultant load P (Timoshenko and Goodier, 1970). The first 
sum in each expression is carried out over the N positive real 
eigenvalues (3~,/3z . . . . .  /3N) that are solutions to the equation 
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Fig. 2 The stress o'~/po versus R/a for various wedge angles y 

sin (2/3i0u) +/31 sin (200) = 0, (7) 

and the remaining sum is carried out over the set of complex 
conjugate roots with positive real parts. The coefficients c,,, the 
first N of which are purely real, are obtained by boundary match- 
ing the tractions from the plastic region, and 

d,, = /3, cos (200) - cos (200/3,). (8) 

The complex potentials (5) and (6) are substituted into the 
formula 

a,,,, - icr,,t = ~2'(z) + ~2 '(~) - e2i°{z~"(z)  + J ( z ) }  (9) 

where z = ( f / a ) e  i°, and (~, 0) are polar coordinates measured 
from O. Equation (9) is separated into real and imaginary parts, 
and a least-squares fitting method is used to enforce these ex- 
pressions at equally spaced points along the boundary. It was 
found that 15 coefficients and 40 fitting points were sufficient 
to obtain a solution. The series convergence decreases with 
increasing angle y since the vertex approaches the plastic 
boundary and only small values of 3' are considered. The com- 
plicated nature of the boundary along which tractions are pre- 
scribed yields a slowly convergent series which does not satisfy 
particularly well the prescribed tractions at some locations along 
the boundary. However, these inaccuracies are localized and 
die away quickly with distance from the boundary. 

4 Results 
Figure 2 shows a plot of the normalized tensile stress ~ryy/ 

P0, where po = P/2a is the uniform pressure under the indenter, 
versus Y/a along the line beneath the center of the indenter for 
several values of y. This result differs from Sneddon's elastic 
result in a major way. Our stress in the elastic transition region 
starts out compressive and then reaches a maximum tensile 
value before decaying to zero with increasing Y/a. This is in 
contrast to the elastic solution for y = 0 which always gives a 
compressive ~yy everywhere in the half-space beneath the inde- 
nter. Our peak tensile stress is O-yy ~ 0.068p0. The region of 
positive Cryy is a lenticular shaped region with the center lying 
about 2.5a below the indenter. These results compare favorably 
with unpublished independent finite element calculations for a 
variety of different materials. 
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A Kelvin Theorem and Partial Work 
of Impulsive Forces 

A.  P.  I v a n o v  ~3 

A rigid body under the action of  several impulsive forces is 
considered. A Kelvin theorem provides a simple rule to calcu- 
late the total work done by all impulsive forces, but it is not 
necessarily applicable to the independent work done by each 
impulse. It is shown that there exist two cases when the partial 
work can be determined by the same Kelvin formula. Otherwise, 
the problem has no algebraic solution. 

A problem in classical impact theory is to determine the work 
done by a given impulsive force F which acts during a short 
interval ( t ' ,  t '  + ~-) when the impulse is applied to a point A 
of the body. It was solved by Kelvin and Tait ( 1867, Art. 308): 

f t  t '+T W = ½I(U + V), I = F(s )ds  (1) 

where U, V denote initial and final velocities of point A. 
It is important that the result does not depend on the specific 

form of function F(t) .  The original proof of formula (1) is 
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and the remaining sum is carried out over the set of complex 
conjugate roots with positive real parts. The coefficients c,,, the 
first N of which are purely real, are obtained by boundary match- 
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plicated nature of the boundary along which tractions are pre- 
scribed yields a slowly convergent series which does not satisfy 
particularly well the prescribed tractions at some locations along 
the boundary. However, these inaccuracies are localized and 
die away quickly with distance from the boundary. 

4 Results 
Figure 2 shows a plot of the normalized tensile stress ~ryy/ 

P0, where po = P/2a is the uniform pressure under the indenter, 
versus Y/a along the line beneath the center of the indenter for 
several values of y. This result differs from Sneddon's elastic 
result in a major way. Our stress in the elastic transition region 
starts out compressive and then reaches a maximum tensile 
value before decaying to zero with increasing Y/a. This is in 
contrast to the elastic solution for y = 0 which always gives a 
compressive ~yy everywhere in the half-space beneath the inde- 
nter. Our peak tensile stress is O-yy ~ 0.068p0. The region of 
positive Cryy is a lenticular shaped region with the center lying 
about 2.5a below the indenter. These results compare favorably 
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considered. A Kelvin theorem provides a simple rule to calcu- 
late the total work done by all impulsive forces, but it is not 
necessarily applicable to the independent work done by each 
impulse. It is shown that there exist two cases when the partial 
work can be determined by the same Kelvin formula. Otherwise, 
the problem has no algebraic solution. 

A problem in classical impact theory is to determine the work 
done by a given impulsive force F which acts during a short 
interval ( t ' ,  t '  + ~-) when the impulse is applied to a point A 
of the body. It was solved by Kelvin and Tait ( 1867, Art. 308): 
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valid in any impact conditions, but one should make certain 
efforts to realize this generality. In particular, Stronge (1992) 
claimed the Kelvin theorem to be correct only in some particular 
cases. The detailed and exhaustive proof of formula ( f )  can be 
found in a number of textbooks, the most famous of them by 
Routh (1905, Art. 346). 

Furthermore, in the case where there are several impulses Ik 
(k = 1, 2 . . . . .  n), which are applied to the same body at 
different points Ak, their total work can be determined by anal- 
ogy with (1) (see Kelvin and Tait, Art. 309 or Routh, Art. 
384): 

W = ½ Z Ik(Uk + Vk) (2) 
k 

where velocities Uk, V~ are related to A~. It appears that formula 
(2) is calculated by summation of the work done by each of 
the impacts. However, in general, none of the terms in (2) 
equals the partial work done by the corresponding impulse and 
only their total is equal to the total work. This statement is 
contained (without proof) in Kelvin and Tait (Art. 309). The 
present paper is devoted to the analysis of partial work. 

First of all we prove relation (2). We assume the change in 
position of the body is negligible during the impacts. Then the 
total work W equals to the change of kinetic energy: 

W = AT = ½M(V *~ -- U *~) + ½(Jft, ~l) - ' ~(Jw, ~)  (3) 

where U *, V* denote the initial and final velocities of the center 
of mass G; w, f~ are the initial and final angular velocities, M is 
the mass, and J is the inertia tensor. The equations of impulsive 
motions have the form 

M(V* - U*) = ~ Ik, 
k 

J ( f ~ -  w) = ~ r k × I k ,  r~=  GAk. (4) 
k 

Formulas (3),  (4) imply that 

' (  V* W = ~  ~ I k ,  + U*)  + ~ ( I k , ( F ~  + ~o) × rk) (5) 
k k 

which is equivalent to Eq. (2) since by the Euler formula Uk 
= U* + w × rk. As regards the work done by a particular 
impulse Ij, this has no kinematical interpretation and is calcu- 
lated by integrating the following relation: 

dV~ = (uj, dij) = (u* + w* × rj, dij), 

ij(t) = , Fj(s)ds (6) 

where u* = u*( t ) ,  w* = w*(t) are the velocity of the center 
of mass and the angular velocity, respectively, ij = i j ( t ) - -  
moving impulse of thej th  force. According to (4),  relation (6) 
may be transformed to 

dW~ = (Uj, dij) + M - ' ( Z  ik, dij) 
k 

+ ( J - ' ( ~  rk × ik), rj × dij) (7) 
k 

Formula (7) shows that the value of Wj depends on the char- 
acter of impulsive forces, i.e., it can not be calculated without 
specification of the functions ik(t). We can determine condi- 
tions when ~ can be expressed in a simple formula similar to 
( 1 ), namely 

Wj = ½(Ij, Uj + Vj). (8) 

The right-hand side in (8) due to (4) can be written in the 
form 
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½(Ij, Uj + Vi) = (Uj, Ij) + 2 M  ( ~  Ik, Ij) 

+ ½(J - ' ( ~  rk × Ik), rj × I~). (9) 
k 

Equation (8) is valid if and only if the integral of the right- 
hand side of formula (7) equals the right-hand side of formula 
(9).  This condition has the following form: 

+ (J-~(r~ x Fk(s)) ,  rj X E(t)) lds  

I ~Qt t '+r f t  t''+r = (Uj, Vj) + 7 , at , • [M-t (F~(s ) ,  Fj( t ) )  
k 

+ ( J - t ( rk  × F k ( s ) ) , r j  × Fj( t ) ) ]ds .  (10) 

The domains of integration in formula (10) are the square 
with the side -r and right triangle which is half of this square 
while the integrands are similar. The correctness of this formula 
depends on the actual form of functions F i ( t ) .  It is wrong in 
general but some particular cases of practical value exist when 
it is true. Note that formula (10) is valid if for all s, t E ( t ' ,  
t '  + 3 - ) a n d f o r a l l k ~ j  

M-C(Fk(s),  Fj( t ))  + (J ~(rk × Fk(s)) ,  rj × Fj( t ))  

= M l (F~( t ) ,F j ( s ) )  + (J l(rk × Fk ( t ) ) , r j  X Fj(s)) .  (11) 

There exist two cases when condition ( 11 ) is satisfied; these 
are connected with a restriction for the direction of impulsive 
forces and their values. 

(i)  If the impulsive forces satisfy the following conditions 

Fj(t)  _L Fk(s) + M(J - I ( rk  × Fk(s)) X rj), 

Vs, t, V k ¢ j ,  (12) 

then both sides of formula (11) vanish. These conditions are 
fulfilled provided the directions of the impulsive forces are 
compatible with positions of points Ak. In particular, formulas 
(12) are correct if thej th impulsive force has constant direction 
which is parallel to rj while each of vectors Fk with k ~ j is 
orthogonal to that direction. The similar conclusion can be made 
in the case any force Fk with k ~ j is parallel to rk while Fj is 
orthogonal to all of these vectors, and 

(ii) if all impulsive forces have constant directions and there 
exist a scalar function ,p(t) and vectors lk (which may have 
arbitrary length) such that 

Fk(t) = ~o(t)lk (k = 1, 2 . . . . .  n). (13) 

The first of these cases is related to a rather strong restriction 
for directions of the impulsive forces but these forces might act 
nonsimultaneously in any order. On the contrary, in the second 
case all the forces must be synchronous but their direction might 
be nonorthogonal. 

Remark  1. In practice, impulsive forces are associated with 
mechanical collisions of rigid bodies. In the absence of friction, 
the impulsive reaction is orthogonal to the body surface at the 
point of contact. Thus conditions (i)  concern the possible loca- 
tion of such points in the case of multiple collision ( see Example 
I below). Conditions (ii) may be applied to the collision of 
two bodies by means of separately calculating the normal and 
tangential components of the reaction (see Example 2). 

Remark  2. In general, when neither of the conditions (i) 
or (ii) are fulfilled, the value Wj cannot be determined by means 
of any algebraic formula. Then the calculation of the double 
integral in the left-side part of formula (10) is necessary. In 
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particular, the result will depend on the order in which the 
impulsive forces are applied. 

Example 1. Examine the collision without friction of a rigid 
body with two other bodies. The impulsive forces are collinear 
with normal vectors hi.2 to the body surface at contact points 
A~.2. The condition (12) has form 

(n~, n2) + M(J ~(r2 × n2), rl X n~) = 0. (14) 

For instance, if at least one of vectors n~ or n2 is collinear 
to the corresponding radius vector r~.2 then Eq. (14) requires 
orthogonality of n~ and n2. In the case where a horseshoe hits 
the ground at two points simultaneously, the vectors n~ and n2 
are collinear, and Eq. (14) coincides with the definition of 
center of  percussion (see Routh, Art. 120). 

Example 2. Consider the point collision of a rigid body 
with a massive barrier. The impulsive reaction can be presented 
as the sum of normal reaction and friction, both forces are 

applied at the same contact point A. The work done by the 
normal reaction can be calculated by the formula 

W,, 1 = ~L(u,, + v,,) (15) 

in the following two cases: 

(i) the line GA is normal to the barrier and for any friction 
law; 

(ii) unidirectional sliding and Coulomb friction and for any 
orientation of the body. 

Note that the second of these cases was discovered by Stronge 
(1992); he showed that these conditions are satisfied only if 
during the impulse the changes in velocity are planar. 
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Finite  Strain Elastostat ics  With  
St i f fening Materials:  A Constra ined  
Min imiza t ion  Mode l  

S. J. Hollister 14,17 j. E. Taylor, lS,17 
P. D. Washabaugh 16'17 

Finite strain elastostatics is expressed for general anisotropic, 
piecewise linear sti~bning materials, in the form of  a con- 
strained minimization problem. The corresponding boundary 
value problem statement is identified with the associated neces- 
sary conditions. Total strain is represented as a superposition 
of variationally independent constituent fields. Net stress-strain 
properties in the model are implicit in terms of the parameters 
that define the constituents. The model accommodates specifi- 
cation of load fields as functions of a process parameter. 

Introduction 
Familiar models for finite strain elastostatics rely on the des- 

ignation of a proper potential function. The alternative approach 
described in this note has the form of a constrained minimization 
problem, where the effective potential is synthesized from indi- 
vidually designated terms each having the form for an elastic- 
locking material. The quantity being minimized is suggestive 
of poWntial energy. Also, components of the load vector fields 
are stated as independent functions of a scalar parameter (pro- 
cess or evolution parameter), and so it is possible within the 
model to represent general load path. This feature may be ex- 
ploited to advantage in the design of a test program that is to 
provide data for the identification of values for the material 
properties parameters in the model. In the context of the nonlin- 
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ear problem, each independent load path may provide indepen- 
dent information for the identification of a given material. 

The Constitutive Model 

Our objective in this section is to establish the above-de- 
scribed model for the finite strain elastostatics of structures 
composed of nonlinear, stiffening material. This model is ex- 
pressed in a form consistent with interpretations in continuum 
mechanics for an arbitrarily inhomogeneous and aeolotropic 
material. The results obtained in what follows are applicable to 
one, two, or three-dimensional problems in the analysis of any 
structure having material properties consistent with the present 
general characterization. 

Essentially the same device as the one described in Taylor 
(1994) is used here to construct the modeling of nonlinear 
constitutive properties. As was done there, we introduce the 
notion (following Prager, 1964) of an elastic-locking material, 
which can be described in terms of a given scalar function h(e0) 
and specified h as follows: 

[ Cij~lT-kt when h(cij) < -h ] 
c~ = ~ = Arg [h(e~j) = h] otherwise " (1) 

Tu represents the second Piola-Kirchoff stress, and compli- 
ance tensor Cij~ is independent of the deformation process. A 
typical stress-strain curve for one dimension is sketched in Fig. 
1. For the general locking material of (1), h(e~) is restricted 
to functions such that h(eq) - h = 0 defines a closed convex 
surface (the locking surface) in the space of field e~j, and the 
notation ~u introduced in (1) identifies states on that surface. 
In the context of a simple locking material, statement ( 1 ) repre- 
sents linear behavior for all strain states corresponding to points 
interior to this surface. Strain states outside the surface are 
inadmissible. (This construction for elastic/locking materials is 
similar in form to the more familiar model for elastic/perfectly 
plastic material, but with the role of stress and strain inter- 
changed and the yield surface replaced by a locking surface.) 

To proceed with the description of the general model, total 
strain, c~, is defined here in a form that amounts to a composi- 
tion of a set of such elastic/locking constituents, say e~, com- 
bined with a strictly linear component Cukl-r~t. Thus, for each 
point x in the closed interval f20 which defines the body the 
total strain is expressed as 

NA 

/3=1 
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particular, the result will depend on the order in which the 
impulsive forces are applied. 

Example 1. Examine the collision without friction of a rigid 
body with two other bodies. The impulsive forces are collinear 
with normal vectors hi.2 to the body surface at contact points 
A~.2. The condition (12) has form 

(n~, n2) + M(J ~(r2 × n2), rl X n~) = 0. (14) 

For instance, if at least one of vectors n~ or n2 is collinear 
to the corresponding radius vector r~.2 then Eq. (14) requires 
orthogonality of n~ and n2. In the case where a horseshoe hits 
the ground at two points simultaneously, the vectors n~ and n2 
are collinear, and Eq. (14) coincides with the definition of 
center of  percussion (see Routh, Art. 120). 

Example 2. Consider the point collision of a rigid body 
with a massive barrier. The impulsive reaction can be presented 
as the sum of normal reaction and friction, both forces are 

applied at the same contact point A. The work done by the 
normal reaction can be calculated by the formula 

W,, 1 = ~L(u,, + v,,) (15) 

in the following two cases: 

(i) the line GA is normal to the barrier and for any friction 
law; 

(ii) unidirectional sliding and Coulomb friction and for any 
orientation of the body. 

Note that the second of these cases was discovered by Stronge 
(1992); he showed that these conditions are satisfied only if 
during the impulse the changes in velocity are planar. 
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Finite  Strain Elastostat ics  With  
St i f fening Materials:  A Constra ined  
Min imiza t ion  Mode l  

S. J. Hollister 14,17 j. E. Taylor, lS,17 
P. D. Washabaugh 16'17 

Finite strain elastostatics is expressed for general anisotropic, 
piecewise linear sti~bning materials, in the form of  a con- 
strained minimization problem. The corresponding boundary 
value problem statement is identified with the associated neces- 
sary conditions. Total strain is represented as a superposition 
of variationally independent constituent fields. Net stress-strain 
properties in the model are implicit in terms of the parameters 
that define the constituents. The model accommodates specifi- 
cation of load fields as functions of a process parameter. 

Introduction 
Familiar models for finite strain elastostatics rely on the des- 

ignation of a proper potential function. The alternative approach 
described in this note has the form of a constrained minimization 
problem, where the effective potential is synthesized from indi- 
vidually designated terms each having the form for an elastic- 
locking material. The quantity being minimized is suggestive 
of poWntial energy. Also, components of the load vector fields 
are stated as independent functions of a scalar parameter (pro- 
cess or evolution parameter), and so it is possible within the 
model to represent general load path. This feature may be ex- 
ploited to advantage in the design of a test program that is to 
provide data for the identification of values for the material 
properties parameters in the model. In the context of the nonlin- 
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ear problem, each independent load path may provide indepen- 
dent information for the identification of a given material. 

The Constitutive Model 

Our objective in this section is to establish the above-de- 
scribed model for the finite strain elastostatics of structures 
composed of nonlinear, stiffening material. This model is ex- 
pressed in a form consistent with interpretations in continuum 
mechanics for an arbitrarily inhomogeneous and aeolotropic 
material. The results obtained in what follows are applicable to 
one, two, or three-dimensional problems in the analysis of any 
structure having material properties consistent with the present 
general characterization. 

Essentially the same device as the one described in Taylor 
(1994) is used here to construct the modeling of nonlinear 
constitutive properties. As was done there, we introduce the 
notion (following Prager, 1964) of an elastic-locking material, 
which can be described in terms of a given scalar function h(e0) 
and specified h as follows: 

[ Cij~lT-kt when h(cij) < -h ] 
c~ = ~ = Arg [h(e~j) = h] otherwise " (1) 

Tu represents the second Piola-Kirchoff stress, and compli- 
ance tensor Cij~ is independent of the deformation process. A 
typical stress-strain curve for one dimension is sketched in Fig. 
1. For the general locking material of (1), h(e~) is restricted 
to functions such that h(eq) - h = 0 defines a closed convex 
surface (the locking surface) in the space of field e~j, and the 
notation ~u introduced in (1) identifies states on that surface. 
In the context of a simple locking material, statement ( 1 ) repre- 
sents linear behavior for all strain states corresponding to points 
interior to this surface. Strain states outside the surface are 
inadmissible. (This construction for elastic/locking materials is 
similar in form to the more familiar model for elastic/perfectly 
plastic material, but with the role of stress and strain inter- 
changed and the yield surface replaced by a locking surface.) 

To proceed with the description of the general model, total 
strain, c~, is defined here in a form that amounts to a composi- 
tion of a set of such elastic/locking constituents, say e~, com- 
bined with a strictly linear component Cukl-r~t. Thus, for each 
point x in the closed interval f20 which defines the body the 
total strain is expressed as 

NA 

/3=1 
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Elastic-locking model. 

#[ 
Total Stress vs. total strain 

for the elastic/stiffening 
material. 

Fig. 1 Typical stress-strain curves according to (1) and (2), for the one- 
dimensional continuum 

Again, each constituent e~ in (2) has the form of the elastic/ 
locking material defined in ( 1 ), and the number NA of them is 
arbitrary. Of course, it is possible that at some point in the 
loading process all elements e~ in this expression become 
locked. The last term in (2) provides that in this event the total 
stress-total strain relation is linear for subsequent increase in 
strain. Between the initial stage of deformation and this fully 
evolved state, the stress-strain behavior is piecewise linear; this 
is indicated in Fig. 1 as it would appear for the one-dimensional 
case. Finally, the finite strain deformation kinematics is de- 
scribed in terms of the Green-Lagrange strain tensor, i.e., total 
strain is given in terms of displacement uk by ~8 

(Z~'___ 1 -~(ui.j + u~.i + Uk.iUkj) X E fro. (3) 

Here the notation is to represent differentiation taken with re- 
spect to coordinates X~ of the undeformed structure. 

Behavior predicted using the present stiffening material 
model is similar to what is realized for f ibered  col lageneous 
materials. Typically such "soft tissue bio-material" is com- 
posed of wavy collagen fibrils that deform readily until they 
become straightened, at which point the material becomes sub- 
stantially stiffer. A simple mechanical analog for this structure 
exists in the biomechanics literature; e.g., Frisen et al. (1969) 
and Kwan and Woo (1989). However, their models, which are 
in effect special cases of ( l ,  2) expressed for one-dimensional 
problems, are not readily extended to cover two-dimensional 
and three-dimensional aeleotropic continua. 

Our formulation for the continuum analysis is expressed in 
a form that facilitates prediction of the evolution of structural 
system behavior with the loading process. As was indicated in 
the Introduction, the loads themselves are stated in terms of a 
general "loading program," and it will be confirmed that the 
formulation is applicable for all load programs that are mono- 
tone in the process parameter (see, e.g., Taylor, 1996); the 
parameter is symbolized here by scalar c~. The formulation com- 
prises a statement for elastostatics suited to modeling the gen- 
eral nonlinear material described above, and it is expressed here 
via the following extremum problem statement: 

1 ^ 1 
r a i n  { 2CijklT"ijTkl + 2 Z L"ijkltZij~klrl3 ~ /3~  -- b i (o l )u i  }dVo 

ce,¢,~fl,u ~o /3 

- I~ t~(c~)u~dS,, [P] 
t , i  ,,t 

subject to 

c~ - ~ -< 0 (CI)  

½(uij + u~.~ + u~.~u~j) - ( d ~ r ~  + ~, ~ )  = 0 x ~ ~o (C2) 

V ~  ~ Iz = {/~[fl = l, 2 . . . .  NA}.  (C3) 

Note that minimization in problem [P] reflects variation inde- 

'8 The development is expressed for Cartesian coordinates without loss of gener- 
ality• 
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pendently with respect to "process parameter" a, and fields 
~-u, c~, and u~ within their admissible sets (admissibility of uk 
follows from the conventional requirement for kinematicalIy 
admissible displacement,  and so on). Symbols ~o and Fo, iden- 
tify the domain of the given structure and its loaded boundary, 
respectively, in the undeformed state. The load program ex- 
pressed by body force bi (a )  and boundary traction ti (c e) are 
specified, as are the material properties Cuk~, L~kl = [C~kl]-~, 
h~(c~), and h 8. The set of admissible  load programs  consistent 
with problem statement [P] is identified below. Note that com- 
pared to constructions used in more familiar expressions of the 
"rain principle," this characterization of load program amounts 
to a generalization, one for which the statement of proportional 
loading appears as a special case. 

The constrained minimization problem [P] expresses (for- 
mally) what amounts to a generalized version of the "minimum 
potential energy characterization" for the elastostatics analysis 
of continuum structures. Accordingly, in what follows an equi- 
librium boundary value problem statement is identified as part 
of the "necessary conditions associated with this extremum 
problem." Also, the cor~stitutive character described via (1) 
and (2) is incorporated within [P] in implicit form, and this is 
to be confirmed as well. The compatibility requirement (3) 
appears in explicit form as constraint (C2) in our model, (C3) 
simply states the locking limit constraint for each element field, 
and (C1) expresses an upper bound on process parameter ce. 

Before proceeding to consider these qualities in detail, we 
note that this convex, nonsmooth constrained minimization 
problem is substantiated in terms of established results in the 
mathematics ,of nonlinear programming (Clarke, 1983). 
Uniqueness of the solutionto [P] can be confirmed directly as 
well, using arguments similar to those exploited in conventional 
modeling of hyperelasticity (e.g., Gurtin, 1981 ). Also, the min 
problem form [P] comprises a proper and convenient setting 
for the development of means for computational solution. 

As part of the detailed interpretation of formulation [P], 
necessary conditions for a minimum of the (constrained) gen- 
eral potential energy objective are examined next. The equations 
of stationarity with respect to the parameter c~, stress ~-~j, the 
/3th constituent e~ of (2), and displacement ui, are (after some 
simplification) 

OIf b,(~)u, dV,~+fvt,(.)u~dSo]+A=O (4) 
0 /  o ot 

C,..,~l(Tkl- )tkt) = 0 in ~2o (5) 

~ • #~ Ohm 
L,.,~teu - k,,. + ~ = 0 in ~2,,, V/3 E Ia (6) 

(k0Fmi). j + b,,,(c¢) = 0 in ~2o (7) 

kijF,,,inj - t in(a) = 0 on F .... (7B) 

Here A, k~ i, and #~ are multipliers associated respectively with 
constraints (C1-3) of [P], and F,,,~ := Ox,,,/OXi represents the 
deformation gradient tensor. According to the Kurash-Kuhn- 
Tucker condition A -> 0. At the same time, generally the deriva- 
tive of compliance w.r.t, process parameter c~ differs from zero 
and so A > 0. In other words, satisfaction of necessary condition 
(4) implies that compliance is monotone increasing in c~. Thus 
it is clear that formulation [P] is valid only for load programs 
bi (ce); t~ (a)  belonging to the set for which this monotonicity 
requirement is met. 

To continue with the interpretation, from (5) k,j = T 0, and 
so T 0 ~ 0 implies through the complementarity requirement 
associated with (C2) that the total strain is compatible (the 
constraint (C2) is active). Also, kij may be eliminated from 
(6) to obtain 
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~ y Oh' 
~-,~ = L~.,kleu + ~ V/3 ~ Ia (8) 

and from (7) and (7B) to find 

(-c~sFm~)./ + b,,, = 0 in f~o (9) 

%F,,in s - tm = 0 in For. (9B) 

Thus, loads b~(a); tg (a )  are equilibrated by total stress ~-0, 
as should be expected. For the interpretation of (8), in order 
to distinguish locked fields from the rest, the set la of all /3 
indexing constituent fields e~ is represented in terms of subsets 
as follows: Ia~ = {/3 E Ia; h(c~) < h~} and Iar = (/3 C Ia; 
h~(c~) = ~ } .  

Then, since h ~ < h/~ implies /1 ~ = 0, it follows from (8) 
that 

" V/3 ~ IA~. 10) Trs ~ Lrskl~kl ( 

In other words, all fields c~z satisfying the condition that their 
strain state lies within the locking constraint surface are uni- 
formly consistent with total stress Tu, in a form that corresponds 
to a simple linear stress-strain relation. 

On the other hand, with h ~ = h~ and #fl > O, the result from 
(8) is 

" Oe¢,[~o V/3 E lay (11) 

where consistent with the notation introduced earlier, ~r~s sym- 
bolizes strain state on the locking surface. (Note that IAe and 
IAL intersect on lac := {/3 E la; h p = h '  and/_t ' = 0}, and IA 
= lae to Ia~ tO IAC.) The second term in (11) may be viewed 
as a "stress relaxation" associated with the strain constraint 
h~(e~) --< h~. Also, Eq. (11) provides for the evaluation of 
(multiplier) #/~ for those constituent fields having strain state 
on the locking surface. 

To summarize, the interpretation just given provides that the 
necessary conditions associated with formulation [P] corre- 
spond to the requirements of equilibrium, compatibility, and 
the general form of piecewise linear constitutive relations that 
was introduced at the beginning of this section. In other words, 
stationarity in [P] is identified with the general equilibrium 
boundary value problem statement for finite straih analysis of 
continuum structures composed of such materials. 

Closure 
Formulation [P] can be viewed as a generalization of the 

classical minimum potential energy characterization for finite 
strain elastostatics in terms of energy potentials. "Total energy" 
appearing in the objective of [P] sums the norm measures of 

the individual constituent fields, which are arbitrary in number, 
and each of these fields is specified independently in terms of 
the designated form of its locking surface, the value in the 
locking constraint that sets the location of that surface, and the 
various tensors dT0k l and L~kl. Net material behavior reflects the 
aggregate effect of the constituent properties, and so matching 
of the model to a particular material requires designation of all 
these attributes. 

The following points also may be of interest: (1) The ap- 
proach reflected in the structure of [P] admits extension to an 
even more versatile form, one where each constituent is itself 
represented by a potential function (e.g., see Taylor, 1996). 
(2) The formulation given here may be viewed as a mixed 
model (both stress and deformation fields are represented); this 
is facilitated by the representation of total strain in the form of 
its decomposition (2). (3) While it may be argued that formula- 
tion [P] is related to the Hu-Washizu principle (see, e.g., Reddy 
(1984)), in fact it is distinct in the two respects that it has the 
form of a rain problem rather than a stationarity principle, and 
it makes use of the decomposition of total strain per (2). (4) 
The present characterization for finite strain analysis of the 
nonlinear continuum provides a convenient base for the formu- 
lation of the optimal material properties design problem ( a treat- 
ment for optimal design of nonlinear material but modeled with 
linear deformation kinematics is given in Bendsce, et al. 
(1995), and for trusses in Taylor and Washabaugh (1994). 
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